
DATABASE DEVELOPMENT LIFE CYCLE

Pranshu Gupta1
Ramon A. Mata-Toledo2

Morgan D. Monger3

Abstract

A software development life cycle model (SDLC) consists of a set of processes (planning,
requirements, design, development, testing, installation and maintenance) defined to
accomplish the task of developing a software application that is functionally correct and
satisfies the user’s needs. These set of processes, when arranged in different orders,
characterize different types of life cycles. When developing a database, the order of these
tasks is very important to efficiently and correctly transform the user’s requirements into
an operational database. These SDLCs are generally defined very broadly and are not
specific for a particular type of application. In this paper the authors emphasize that there
should be a SDLC that is specific to database applications. Database applications do not
have the same characteristics as other software applications and thus a specific database
development life cycle (DBDLC) is needed. A DBDLC should accommodate properties
like scope restriction, progressive enhancement, incremental planning and pre-defined
structure.

Keywords: Software Development, Database, DBMS, lifecycle model, traditional
lifecycles

Introduction

Database management systems are generally categorized as transaction processing
systems, decision support systems and/or knowledge-based systems. During their
development each of these types of DBMS introduces different problems and challenges.
Traditionally, SDLC models designed for developing DBMS followed the design-first-
implement-later approach because of the DBMS were mainly of the transaction
processing type [Weitzel and Kerschberg, 1989]. The authors believe, as we will explain
later, that the design-first-implement-later approach does not work for the databases
underlying data mining or knowledge-base systems or for that matter for any system
where the requirements change very frequently.

Some of the traditional SDLCs models used for software development are: waterfall,
prototypes, spiral and rapid application development (RAD). These life cycles models are
defined broadly in terms of what each individual phase accomplish, the input and output
documents it produces or requires, and the processes that are necessary in completing
each phase. In general, the output deliverables from the previous phase serve as an input
to the next phase. However, in these models it can be observed also that usually there is
no interaction between two consecutive phases; therefore, no feedback between these

1 Computing and Information Sciences, Kansas State University, Manhattan, KS 66502
2 Department of Computer Science, James Madison University, Harrisonburg, VA 22801
3 Lead Developer/Designer, Datatel Inc., Fairfax, VA 22033

phases exists. When creating a database system the feedback between some of the life
cycle phases is very critical and necessary to produce a functionally complete database
management system [Mata-Toledo, Adams and Norton, 2007].

When choosing or defining a lifecycle model for database systems we need to take into
account properties such as scope restriction, progressive enhancement, incremental
planning and pre-defined structure [Weitzel and Kerschberg, 1989]. In addition, it is
essential that the requirements and goals should be documented using a requirements
traceability matrix (RTM) that will help in limiting the project to its envisioned scope.
The database development life cycle should allow the incorporation of new user’s
requirements at a later phase due to the interactive nature that should exist between the
user and the developers. This would make the enhancement of a product easier and would
not increase the cost significantly. For this reason incremental planning is important for
database system development. Apart from the initial planning phase, individual planning
is required for the design and the requirements revision phases as they highly influence
the overall implementation and the evaluation of the entire system. A life cycle model
lacking any of aforementioned properties (scope restriction, progressive enhancement,
incremental planning and pre-defined structure) would increase the cost, time and effort to
develop a DBMS.

Traditional Lifecycle Models

This section discusses the traditional lifecycle models and shows that, at least one of the
properties required for database system development (scope restriction, progressive
enhancement, incremental planning and pre-defined structure), is missing from each of
these lifecycles. For this reason, these life cycle models are not completely suitable for
developing database systems. In the remaining of this section we briefly describe some of
the most popular software models and point out their deficiencies for developing DBMSs.
Waterfall model: This is the most common of all software models [Pressman, 2007]. The
phases in the waterfall cycle are: project planning, requirements definition, design,
development, testing, and installation and acceptance (See Figure 1). Each of these phases
receives an input and produces an output (that serves as the input for next phase) in the
form of deliverables.

The waterfall model accommodates the scope restriction and the pre-defined structure
properties of the lifecycle. The requirements definition phase deals with scope restriction
based on the discussions with the end user. The pre-defined structure establishes a set of
standard guidelines to carry out the activities required of each phase as well as the
documentation that needs to be produced. Therefore, the waterfall model, by taking into
account the pre-defined structure property, helps the designers, developers, and other
project participants to work in a familiar environment with fewer miscommunications
while allowing completion of the project in a timely manner [Shell Method™ Process
Repository, 2005].

On the other hand, the waterfall model lacks the progressive enhancement and
incremental planning property. In this model, the requirements are finalized early in the
cycle. In consequence, it is difficult to introduce new requirements or features at later

phases of the development process [Shell Method™ Process Repository, 2005]. This
waterfall model, which was derived from the “hardware world”, views the software
development from a manufacturing perception where items are produced once and
reproduced many times [Pfleeger and Atlee, 2010]. A software development process does
not work this way because the software evolves as the details of the problem are
understood and discussed with the end user.

The waterfall model has a documentation driven approach which, from the user’s point of
view, is considered one of its main weaknesses. The system specifications, which are
finalized early in the lifecycle, may be written in a non-familiar style or in a formal
language that may be difficult for the end user to understand [Schach, 2008]. Generally,
the end user agrees to these specifications without having a clear understanding of what
the final product will be like. This leads to misunderstood or missing requirements in the
software requirements specifications (SRS). For this reason, in general, the user has to
wait until the installation phase is complete to see the overall functionality of the system.
It should be obvious then that the lack of incremental planning in this model makes it
difficult to use when developing a database system particularly when the latter supports,
for instance, a data mining or data warehouse operations where the “impromptu” demands
imposed on the system vary frequently or cannot be easily anticipated.

Figure.1. Waterfall model [Pressman, 2007]

Prototype model: In this life cycle model, the developers create a prototype of the
application based on a limited version of the user requirements [Pfleeger and Atlee,
2010]. The prototype consists mainly of a “hallow graphics” which shows some basic and
simple functionality. However, this may create a problem because the user may view the
prototype as it were the final product overlooking some of the requirements specified in
the SRS which may not be met fully by this “final product” [Pfleeger and Atlee, 2010].

Development

Project Planning

Requirements Definition

Design

Testing

Installation & Acceptance

The prototype model limits the pre-defined structure property of a lifecycle. When a
prototype is designed, the developer uses minimal code to show some requirements.
During this process no integration with other tools is shown. This leads to uncertainty
about the final product. The prototype may have to be re-designed in order to provide a
finalized product and thus it may not look the same as the one shown to the user initially.

 Figure.2. Prototype model [Pfleeger and Atlee, 2010]

This lifecycle model does support the progressive enhancement property. However, since
the user is only shown a prototype there may be features that the user would like to
incorporate but which may too costly or time consuming to incorporate later in the
project. [Shell Method™ Process Repository, 2005].

In the prototype model, the requirements are finalized early in lifecycle as shown in
Figure 2. The iterations are focused on design, prototyping, customer evaluation and
review phases. This model lacks the incremental planning property as there is no planning
after the initial planning phase.

Spiral model: This model is a combination of the prototyping and waterfall model
[Pfleeger and Atlee, 2010]. Starting with the requirements and a development plan, the
system prototypes and the risks involved in their developments are analyzed through an
iterative process. During each iteration alternative prototypes are considered based upon
the documented constraints and risks of the previous iteration [Pfleeger and Atlee, 2010].
With each subsequent prototype the risks or constraints are minimized or eliminated.
After an operational prototype has been finalized (with minimal or no risks), the detailed
design document is created (See Figure 3).
The spiral model supports the scope restriction property of a lifecycle. The requirements
are designed in a hierarchical pattern; any additional requirements are build on the first set
of requirements implemented [Shell Method™ Process Repository, 2005]. In this model,
the problem to be solved is well defined from the start. In consequence, the scope of the
project is also restricted.

Initial Requirements

Proto Typing

Design Customer Evaluation

Review and Update

Maintain Test Development

Customer
Satisfied

To control risk, the spiral model combines the development activities with a risk
management process [Pfleeger and Atlee, 2010]. This latter process requires expertise in
the area of risk evaluation which makes the activities that need to be carried out very
complex and difficult. The risk evaluation process imposes the consideration of
constraints such as cost, time and effort for the entire project. The pre-defined structure
property for this lifecycle model, in terms of the number of activities, is so complex that it
raises the problem of controllability and efficiency during development of the system.

 Figure.3. Spiral model [Schach, 2008]

The progressive enhancement property is not accommodated in this lifecycle model
because, even though, the system is evolving with each phase, no new features can be
added to the SRS due to the fact that the requirements have been finalized in an earlier
phase.

Figure 3 shows the activities and phases of the spiral model and its iterative nature.
However, notice that the incremental planning property is still missing from this lifecycle.
The initial iterations are focused on alternatives and risks involved in the prototype
selected. However, none of these iterations focus on updating the SRS by discussing it
with the end user. As a result of this the requirements may not be updated; this may lead
to having missing or misunderstood requirements. Due to its iterative nature this model
may work well for developing requirements that are well understood from the beginning
of the project. However, it is not a good model for developing database systems where
new requirements may arise during the later phases of the project. The spiral model also
assumes that software is developed in discrete phases; for this reason it does not satisfy
the property of incremental planning [Schach, 2008].

Rapid application development model (RAD): The basic approach of this model is to
let the user try the application before it is finally delivered. The users provide feedback
based upon their hands-on experience with the system.

The foremost problem with this model is that it is very easy to get caught in an unending
and uncontrollable cycle of enhancements. This will lead to violations of the progressive
enhancement and scope restriction property.

As the name of this model implies a prototype is created and installed as soon as possible
at the user’s site for their review. This model lacks the predefined structure because, in
general, the rapid prototype phase is completed without strictly adhering to the guideline
documents and the processes already defined to complete this phase [Schach, 2008].

As Figure 4 shows the incremental planning property of a lifecycle is missing in this
model too. After the prototype is completed and evaluated by the end user the
requirements may or may not change. If there are no changes in the requirements, then
development of the system will continue as initially envisioned. However, if significant
requirement changes are necessary, then it is imperative that a timeline for the remaining
of the project be established but this is not generally done [Schach, 2008].

Figure.4. Rapid prototyping model [Schach, 2008]

Database Development Lifecycle

As we have shown in the previous paragraphs, each of the traditional lifecycle models is
missing at least one of the four properties required for database system development. In
this section the authors propose a new lifecycle model that is adapted from the traditional
lifecycles and which is enhanced for database system development (See Figure 7). This
new model satisfies properties such as scope restriction, progressive enhancement,
incremental planning and pre-defined structure.

In most traditional life cycles, the first phase is the project planning phase. Although it is
a good idea to plan the project from its inception it is also true that, unless the problem, its
requirements, and its constraints are well understood it is very difficult to lay out a

Retirement

Changed requirements

Implementation

Rapid Prototype

Analysis

Design

Post delivery maintenance

realistic timeline for the entire project. For this reason, we propose that this initial phase
be limited to planning, not about the entire project, but about the collection of
requirements definition and information about the organization. In other words, we need a
plan on how we are going to proceed to identify the problem as a whole, its scope,
constraints, and overall functionality. The resulting document is generally the project plan
document.

The next phase of this model, the requirement definition and organizational data
collection phase, should have as its ultimate goal to provide a complete set of
requirements, from the user point of view, for the database system under consideration.
This phase, by its very nature, requires a high degree of interaction with people at all
levels of the organization, from top management to the entry level clerical workers.
Essential activities of this phase are: direct examination of the organizational documents
as well as their dataflow through the organization and the overall operation of the latter.
Additional information can be collected by means of interviews, questionnaires, and in
situ inspection of personnel activities at all organizational levels. This phase should also
produce a preliminary document of the present needs and future expansion as currently
perceived by all users. Figure 5 shows the deliverables for this phase, namely, the
software requirement specification (SRS) and the requirements traceability matrix (RTM).
These deliverables serve as the input to the next phase, the requirement analysis phase.

Figure.5. Requirements definition phase

After the previous phase has been completed it is necessary to analyze the data to consider
issues of extreme importance such as feasibility, cost, scope and boundaries, performance
issues, security issues, portability requirements, maintenance and the design model of the
expected system. This analysis of the requirements and organizational data helps to
identify potential problems and constraints that could arise during development phases.
Once the aforementioned requirements and issues have been thoroughly analyzed it is
necessary to envision a timeline for future work. During this timeline planning phase it is
necessary to update the project plan document initially created and thus addressing the
issue of incremental planning. As was indicated early incremental planning is missing in
some of the traditional lifecycle models. It is the opinion of the authors that incremental
planning is an essential property which needs to be satisfied throughout the entire
lifecycle as indicated in Figure 7.

Requirement definition
High-level
requirement

Requiremen
ts
traceability

Software
requirement
s
specification

Figure.6. Deliverable for the design phase

 The next two phases of this proposed model comprise the database design phase and the
application design phase. The former of these two phases consists of the creating a
conceptual design, selecting a database model, and producing a logical and physical
design of the system as shown in Figure 7. The database design phase requires
understanding of both the operational and business requirements of the organization. The
purpose of the conceptual design step of the design phase is to create a high-level
overview of the database using, for example, an entity-relationship model [Vanslyke,
2009]. The next step is to choose a database model suitable for the system in
consideration [Rob and Coronel, 1997]. The conceptual design then needs to be converted
into a logical design. To achieve this conversion the logical design uses as its input the
conceptual design document (CDD) as shown in Figure 6. The logical design serves as a
communication tool that describes the logical functioning and the system structure to the
users [Dave, 2010]. The logical design provides a more detailed view of the database than
that of the conceptual design. The last step in the database design phase is to convert the
logical design into a physical design. The deliverable resulting from this last conversion is
the physical design document (PDD) as shown in Figure 6. The physical design
emphasizes the internal aspects of the database, e.g. the operations and processes to carry
out the necessary tasks [Dave, 2010]. Figure 6 shows the deliverables for the database
design phase, namely, conceptual design document (CDD), logical design document
(LDD), physical design document (PDD) and the updated RTM. The physical design
documents are late used in the database implementation and loading phase.
During the design phase it is important to interact with the users. As result of this process
the requirements may change. It is imperative then that any change to the requirements be
reflected in the RTM and any other relevant document. In doing so, we address the issue
of progressive enhancement. We need to mindful that this interaction process is crucial
but we also need to be aware not to fall into an unending cycle of changes that may alter
the initial scope of the system.

Problems and
Constraints

Software
requirements
specification
(SRS)

Design

Physical design
document
(PDD)

Logical
design
document
(LDD)

Conceptual
design
document
(CDD)

Updated
requirements
traceability

Requirements
traceability
matrix

While the database is being designed, the application design phase is carried out in
parallel. The application design documents should be discussed with the user and
changes should be made to the RTM if needed. The design phase is followed by the
database implementation and loading phase. The database is implemented using the
physical design documents developed earlier during the design phase. The database
implementation and loading phase includes steps such as the follows: creating database
tables, populating the tables, building constraints and querying the data.

Figure.7. Database development life cycle

Next follows the application implementation phase. The application design documents
from the application design phase serve as an input to this phase. The database is then
integrated with the application(s) in the next phase i.e. the integration and testing phase.
The integrated system is tested in this phase.

Finally we have the installation/evaluation phase. Here the use tries out the product and
appraises its functionality and performance. After the system has been accepted by the
user and it is operational, the maintenance phase begins. This maintenance phase will
continue until the product has reached the end of its useful life. That is, until it no longer
meets the new requirements of the user. At this point the whole process of developing a
new system starts anew.

Conclusion

A complete and correct database system is difficult to create if the SDLC does not take
into account the intrinsic characteristics of the system to be developed and the SDLC
itself does not accommodate properties like scope restriction, progressive enhancement,
incremental planning and pre-defined structure. As indicated before, traditional SDLCs
lack at least one of the aforementioned properties making them not all suitable for the
development of DBMSs, particularly, when the demands on the DBMS are unpredictable.
One of main characteristics of this new proposed model is that it makes emphasis on
activities that go back and forth between phases allowing either the incorporation of new
requirements, if needed, or the correction of incomplete or misunderstood requirements.
The idea is to allow for a system that is more flexible of the realities of developing a
DBMS.

References

1. “The Software Development Life Cycle for small to medium database
application.” Shell Method™ Process Repository. Digital Publications LLC.

2. Dave. “Database design steps / How to develop a database: Data Models & the
Database Development Life Cycle” [Internet]. Knol., Aug 15,2010, Available
from: http://knol.google.com/k/dave/database-design-steps-how-to-develop-
a/2pr18mcjtayt9/11.

3. Mata-Toledo R.A., Adams E., and Norton M., “Strategies for Determining a
Design View: A Preamble to DBMS Modeling” Presented to the 16th Annual
Eastern Small College Computing Conference. October 27-28, 2000, 29-39.

4. Pfleeger S. L., and Atlee J. M., Software engineering, NJ: Pearson Higher
Education, 2010.

5. Pressman, R.S., Software Engineering: A Practitioner's Approach, NJ: Pearson
Education, 2007.

6. Rob, P., and Coronel, C., Database Systems: Design, Implementation, and
Management. Boston: Course Technology, 1997.

7. Schach S. R, Object-oriented software engineering, McGraw Hill, 2008.
8. Vanslyke, Craig., “Conceptual database design: Entity relationship modeling”

[Internet]. Knol., May 15, 2009 Available from: http://knol.google.com/k/craig-
vanslyke/conceptual-database-design/1fwdlprfh17di/2.

9. Weitzel, John R., and Kerschberg, Larry. “Developing knowledge-based systems:
reorganizing the system development life cycle.” Commun. ACM 32, 4, April
1989, 482-488.

	1. “The Software Development Life Cycle for small to medium database application.” Shell Method™ Process Repository. Digital Publications LLC.

