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Abstract 
While there is uncertainty about the data that enter into economic models 

and about the parameters that govern economic models, the fact that economists 
often approach macroeconomic data armed with different models of the economy 
suggests that uncertainty, or ambiguity, about the model could also be potentially 
important. A policy can be made “robust” to model uncertainty by designing it to 
perform well on average across all of the available fully specified models rather 
than to reign supreme in any particular model. In this paper we compare the 
implications of robust monetary policy versus non robust monetary policy for a 
model based on a new Keynesian model with two equations that represent the 
dynamics of inflation and the dynamics of the output gap. Using Matlab, we are 
able to approximate the solution to the linear–quadratic problem associated with 
the estimated model, thus obtaining the optimal monetary policy decision.  
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Introduction 
 
According to Alan Greenspan (2003), “Uncertainty is not just an important 

feature of the monetary policy landscape; it is the defining characteristic of that 
landscape”. In fact, the recognition that all monetary policymakers must bow to 
the presence of uncertainty appears to underlie Greenspan’s (2003) view that 
central banks are driven to a “risk management” approach to policy, whereby 
policymakers “need to reach a judgement about the probabilities, costs, and the 
benefits of the various possible outcomes under alternative choices for policy”.  

Uncertainty comes in many forms. One obvious form is simply ignorance 
about the shocks that will disturb the economy in the future (oil prices, for 
example). Other forms of uncertainty, perhaps more insidious can also have 
resounding implications on how policy should be conducted, three of which are 
data uncertainty, parameter uncertainty, and model uncertainty. 
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The model 
 
When solving robust control problems there are generally two distinct 

equilibria that are of interest. The first is the “worst-case” equilibrium, which is 
the equilibrium that pertains when the policymaker and private agents design 
policy and form expectations based on the worst-case misspecification and the 
worst-case misspecification is realized. The second is the “approximating” 
equilibrium, which is the equilibrium that pertains when the policymaker and 
private agents design policy and form expectations based on the worst-case 
misspecification, but the reference model transpires to be specified 
correctly.According to the state – space formulation, the economic environment is 
one in which the behavior of an 1×n  vector of endogenous variables, tz , 
consisting of  1n  predetermined variables, tz1 , and )( 122 nnnn −=  non 
predetermined variables, tz2 , are governed by the reference model 

,111121211111 ++ +++= ttttt CuBzAzAz ε (1) 
 

∗ 
 
 ,222212112 ttttt uBzAzAzE ++=+ (2) 
where tu  is a 1×p  vector of control variables, ],0[1 st Iiid≈ε  is an 1×s  

vector, 1ns ≤  , of white – noise innovations, and tE  is the mathematical 
expectations operator conditional upon information available up to and including 
period t . The reference model is the model that private agents and the policy 
maker believe most accurately describes the data generating process. The matrices 

2122211211 ,,,,, BBAAAA  contain structural parameteres and are conformable with 

tt zz 21 ,  and tu  as necessary. The matrix 1C  is determined to insure that t1ε  has the 
identity matrix as its variance – covariance matrix. 

The policymaker’s problem is to choose a sequence for its control variables, 
∞
0}{ tu , to minimize the objective function  

[ ],2
0

0∑
∞

=

′+′+′
t

tttttt
t QuuUuzRzzE β (3) 

where )1,0(∈β  is the discount factor. The weighting matrices, ,,UR  and Q  
reflect the policymaker’s preferences; R  and Q  are assumed to be positive 
semidefinite and positive definite, respectively.  
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Acknowledging that their reference model may be misspecified, private 
agents and the policymaker surround their reference model with a class of models 
of the form 

,)( 1111121211111 +++ ++++= tttttt vCuBzAzAz ε (4) 
 ,222212112 ttttt uBzAzAzE ++=+ (5) 
where 1+tv  is a vector of specification errors, to arrive at a “distorted” model. 

The specification errors are intertemporally constrained to satisfy 

∑
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++ ≤′

0
110 ,

t
tt

t vvE ηβ      

                                                                                 (6) 
where ],0[ ηη ∈  represents the “budget” for misspecification.  
 
Robust policymaking with commitment using state – space methods 
 
In the commitment solution, both the policymaker and the evil agent are 

assumed to commit to a policy strategy and not succumb to incentives to renege 
on that strategy. Employing the definitions 
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the optimization problem can be written as  
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t uQuuUzRzzE β  (9) 

subject to  

11
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++ ++= tttt CuBAzz ε ,(10) 
which, because the first – order conditions for a maximum are the same as 

those for a minimum, has a form that can be solved using the methods developed 
by Backus and Drifill ([1]). Those methods involve formulating the problem as 
linear – quadratic, the value function has the form dVzzzV ttt +′=)(  and the 
dynamic program can be written as 
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It is well known that the solution to this optimization problem takes the form 
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where tp2  is an 12 ×n  vector of shadow prices associated with the non 
predetermined variables, tz2 . The matrix T  provides a mapping between the state 
variables, tz1  and tp2 , and tz  and is given by 
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where 21V  and 22V  are submatrices of V . Finally, V  and F  are obtained by 
solving for the fix – point of  

,)~()~(~~2 FBAVFBAFQFFURV −′−+′+−= β (16) 
).~~()~~~( 1 VABUBVBQF ′+′′+= − ββ (17) 

When the worst case misspecification is realized, the economy behaves 
according to equations (16) – (18). While the worst case equilibrium is certainly 
interesting, it is also important to consider how the economy behaves when the 
reference model transpires to be specified correctly. Partitioning F  into 

][ ′′′ vu FF  where uF  and vF  are conformable with tu  and 1+tv , respectively. The 
approximating equilibrium has the form  
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Interestingly, the worst-case equilibrium and the approximating equilibrium 

share certain features. For instance, the worst-case equilibrium and the 
approximating equilibrium differ only with respect to the law of motion for the 
predetermined variables and, as a consequence, following innovations to the 
system the initial-period responses of the predetermined variables are the same for 
the approximating equilibrium as for the worst-case equilibrium. But since the 
decision rules for tz2  and tu  are also the same for the two equilibria, it follows 
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that the initial-period responses by the nonpredetermined variables and by the 
policy variables are also the same. With respect to impulse response functions, 
differences between the approximating equilibrium and the worst-case 
equilibrium then only occur one period after innovations occur. 

Furthermore, because the coefficient matrix on the innovations is 1C , which 
scales the standard deviations of the innovations, it follows that adding noise to 
the innovations or changing their correlation structure is not part of the evil 
agent’s strategy. Instead, the optimally designed misspecification has the effect of 
changing the law of motion for the predetermined variables. More precisely, since 
the specification errors enter only the stochastic component of tz1 , the evil agent’s 
strategy is to change the conditional means of the shock processes but not their 
conditional volatility.  

 
Robust policy in an empirical model 
 
To illustrate the robust control approach, we study the model estimated by 

Rudebusch ([8]), which is based on a standard New Keynesian model and 
contains two equations that, conditional upon the short – term interest rate, ti , 
summarize the dynamics of inflation, tπ , and the dynamics of the output gap, ty : 

tttttt yE ,11 )1( πππ εαπμπμπ ++−+= −+ ,(23) 

tyttttyttyt EiyEy ,111 )()1( επβμπμ +−−−+= +−+  (24) 
Equation (23) is a “New Keynesian Phillips curve” derived from the optimal 

pricesetting behavior of firms acting under monopolistic competition, but facing 
price rigidities. The presence of lagged inflation and the “supply shock” t,πε  can 
be motivated by indexing those prices that are not reoptimized in a given period 
and by a time-varying elasticity of substitution across goods, leading to time-
varying markups. Equation (24) can be derived from the household consumption 
Euler equation, where habits in consumption imply that current decisions depend 
to some extent on past decisions. The “demand shock” ty ,ε  can be attributed to 
government spending shocks or to movements in the natural level of output.8 An 
empirical version of this model, suitable for quarterly data and similar to that 
estimated by Rudebusch ([9]), is given by 
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where ∑
=

−=
3

0
4/1

j
jtt ππ  is four – quarter inflation and ti  is the nominal 

federal funds rate (the policy instrument). We generalize the model slightly to 
include forward – looking behavior in the output gap equation, as in Rudebusch 
([9]). The model’s parameters estimates, shown in Table 1, are taken from 
Rudebusch ([8]) and are obtained using OLS (and survey expectations) on 
quarterly U.S. data from 1968:Q3 to 1996:Q4, except for the parameter yμ , which 
is set to the average estimate. 

 
 
Table 1 – Parameter Values 
Inflation Output Monetary Policy 

πμ  0.29 yμ  0.20 β  0.99 

1πα  0.07 1yβ  1.15 λ  0.50 

2πα  -0.14 2yβ  -0.27 υ  0.10 

3πα  0.40 rβ  0.09   

4πα  0.07 yσ  0.833   

yα  0.13     

πσ  1.012     
 
The model’s key features are that inflation and the output gap are highly 

persistent, that monetary policy affects the economy only with a lag, and that 
expectations are formed using period 1−t  information. Notice, also, that the 
weights on expected future inflation and output. While consistent with much of 
the empirical literature, are small relative to many theory – based specifications.  

The central bank’s objective function is assumed to be 

∑
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=
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222
0}{

)(min
t

ttt
t

i
viyE

t

λπβ ,(27) 

where we 1.0,5.0,99.0 === vλβ . Thus, the central bank sets monetary 
policy to avoid volatility in inflation around its target (normalized to zero) and in 
the output gap around zero (precluding any discretionary inflation bias). In 
addition, the central bank desires to limit volatility in the nominal interest rate 
around target (normalized to zero). The concern for misspecification,φ , is chosen 
so that the detection error probability is 0.1, given a sample of 200 observations. 
This implies that 5.54=θ .  

The model can be written in state – space form as follows: 
11 ++ ++= tttt CBuAzz ε ,(28) 
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We first solved the linear quadratic optimization problem in the nonrobust 

case. The matrix which gives the optimal feedback is  
( )4.296-16.047-40.24541.088-2.399 6.947-0.913 3.5410.36-20.1=K (33) 

and the optimal control is: 
tttt KzFziu −=== .(30) 

Next, we solved the worst – case robust control problem. In this case, 
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Matrices A, C and R are the same as in the nonrobust case.  
Solving the linear quadratic optimisation problem, we obtained the optimal 

feedback matrix  
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206.033.062.099.20008.0422.0152.083.0472.04969.1
216.0055.097.126.30005.0315.0125.061.0783.04045.1

22.038.322.199.03038.2741.9302.065.1992.06733.1
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(31) 
The optimal control is given by tt zKu −= , which means that the optimal 

policy rule and misspecification are given by: 
 
Coefficient on 

 tπ  1−tπ  2−tπ  3−tπ  ty  1−ty  
Policy 
rule  

ti  

-1.67 -0.99 1.65 0.30 9.74 0.99 

Misspeficiation 
1, +tvπ  1.4 -0.78 0.61 0.12 0.31 0.0005 

1, +tyv  1.49 -0.47 0.83 0.15 0.42 0.0008 
 
 
In figures 1, 2, we plot impulse responses to unit – sized innovations to 

inflation ( t,πε ) under commitment using the state – space method, for the 
nonrobust and robust cases, respectively.  

 
 Figure 1 Figure 2 
 
Conclusions 
 
In formulating monetary policy, central banks must cope with substantial 

economic uncertainty.  
Economic uncertainty can arise from different sources: the state of the 

economy, the nature of economic relationships, and the magnitude and persistence 
of ongoing shocks. 



 28 

Robust control theory instructs decision makers to investigate the fragility of 
decision rules by conducting worst-case analyses. 

In this paper we show how state space methods and structural-form solution 
methods can be applied to robust control problems, thereby making it easier to 
analyze complex models. 

We illustrate the state space solution methods by applying them to an 
empirical New Keynesian business cycle model of the genre widely used to study 
monetary policy under rational expectations. A key finding from this exercise is 
that the strategically designed specification errors will tend to distort the Phillips 
curve in an effort to make inflation more persistent, and hence harder and more 
costly to stabilize. The optimal response to these distortions is for the central bank 
to become more activist in its response to shocks.  
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