
Journal of Information Systems & Operations Management, Vol. 15.2, December 2021

Pag. 267 / 309

GENERAL CONSIDERATIONS REGARDING THE DEVELOPMENT OF

GAMES USING UNITY TECHNOLOGY

Alexandru TĂBUȘCĂ121

Cristina COCULESCU122

Mironela PIRNAU123

Abstract:

Video game development platforms represent a specialized work environment that contains

a multitude of properties and tools that help game creators in designing and making

applications in this field. The market for game development platforms is currently booming,

offering a diverse range of options. Anyone with motivation and ideas can start creating and

developing a game using popular platforms such as Unreal Engine, Unity, Game Maker or

RPG Maker VX Ace. Today, every platform for game development is supported by a vast

basic documentation but also by a huge public community that provides game creators with

all the tools they need to create high-performance games. If an experienced or even less

experienced developer finds himself in a situation where he cannot solve a problem on his

own, he has the opportunity to find the answer to the problem encountered, on the

community forums corresponding to the technology used in creating the game, or he will

find someone who has faced a similar situation and can give him answers/advice for the

specific situation. Depending on the purpose of the final product, the game creator has the

opportunity to choose the platform he will use in creating it. Unity is the most popular video

game development platform due to its cross-platform capability. Unity can be used both in

making 2D or 3D games, but also in the film, automotive, architecture, engineering, and

construction industries.

Keywords: game development, cross-platform, Unity

1. Introduction

Unity is a cross-platform game engine developed by Unity Technologies, launched first in

June 2005, exclusively for MacOS X. It can be used to create games in bidimensional, tri-

dimensional, virtual, and augmented reality environments – including simulations [1]. The

latest stable version, 2019.2.17, has been launched in December 2019. Even since 2018,

Unity has been utilized to develop approximately half of the new mobile games brought to

the market and around 60% of the content developed for augmented reality and virtual

reality. The programming languages employed in conjunction with Unity are C# and

JavaScript. For these two programming languages an integrated development environment

is available within Visual Studio of MonoDevelop, as code editors [2].

121 PhD Associate Professor, Romanian-American University, School of Computer Science for

Business Management, tabusca.alexandru@profesor.rau.ro
122 PhD Associate Professor, Romanian-American University, School of Computer Science for

Business Management, coculescu.cristina@profesor.rau.ro
123 PhD Associate Professor, Titu Maiorescu University, Faculty of Informatics,

mironela.pirnau@prof.utm.ro

mailto:tabusca.alexandru@profesor.rau.ro
mailto:coculescu.cristina@profesor.rau.ro
mailto:mironela.pirnau@prof.utm.ro

Journal of Information Systems & Operations Management, Vol. 15.2, December 2021

Pag. 268 / 309

Unity Technologies, as well as the community members, actively create assets. Unity Asset

Store is a growing library of such assets, hosting thousands of free and low-price elements

that can help save both time and effort for Unity developers. Inside the store there are many

types of different assets, including textures, animations, fully-fledged models, complete

projects, tutorials and editor extensions. This blend of both free and easily accessible assets

(low-cost ones) represents a hugely important feature for Unity, because the developers can

download them and insert directly into their project [2]. Today, in pandemic conditions

worldwide, for the development of any game the sound component is very important and

helps produce a captivating and emotional game experience. Finding the perfect soundtrack

that best matches a game application is a very important element to attract and retain players

(customers). To this end, Unity offers an extensive library of both free and low-cost audio

elements, music and sound effects, so that the game developer should only identify exactly

what matches as best as possible to his game. [2][3].

Unity offers a very intuitive user interface that invites developers to experiment with the

multitude of options and features offered for content creators. There are three different

version of this interface: Personal, Plus and Pro. There also exists an Enterprise version,

similar to the Pro one but bundled with an Enterprise environment package.

2. New updates and features in Unity

Unity has brought updates, new features, and tools for the 2D game developers. It added

support for maneuvering of animations directly from the “timeline”, for animation preview

and modification [2][4]. The application interface is very well organized and very easy to

understand and use (see Figure. 1).

Figure 1. Main Unity user interface

The interface comprises many different options, among which we notice the following main

ones: Project (which shows the assets), Hierarchy (through which developers see all

elements inside the game environment), Console (shows errors, warning messages or help

Journal of Information Systems & Operations Management, Vol. 15.2, December 2021

Pag. 269 / 309

error-tracking through the debugger), Asset Store (used for adding diverse objects/assets

for the game), Prefab (for different effects for the camera/view, field etc.), the Scene

window (where developers can edit all aspects of the current project), and the Play, Pause,

Forward buttons. Unity also makes available to the game creators many different scripts

that can add functionalities, in the “Tilemap Editor” section, as well as new brushes and

tiles which can be accessed from the 2D Extras package [1][5]. The 2D editor for tile maps

is not available by default when first installing Unity, but it can be downloaded from the

Package Manager section. An important added feature was introduced in Unity as the 2D

Sprite Shape component, meant to help create curved fields. The facility goes together with

an editor that allows the definition of margins and fillings, as well as the automatic creation

of colliders [2]. 2D PSD Importer component permits the import of sprites directly into a

third-party application like Photoshop, keeping the image layering – fact that allows layer-

by-layer animation design without the need to individually import each individual layer.

MonoBehaviour is the basic class of all scripts meant to be attached to a game object and it

is used for faster code creation, lighting manipulation, and development of Artificial

Intelligence (AI) modules without extensive previous AI knowledge [2][6].

The main widely used functions of the MonoBehaviour class are:

1. Start() – is represents a function called only once, inside the first frame after script

activation, before any Update type function

2. Update() – represents a function called at each individual frame

3. FixedUpdate() – represents a function called regularly for physics calculations (by

default every 0.02 seconds)

4. Awake() – a function called only once on all scene objects, before all Start

functions, when the script instance is loaded

Useful properties with wide usage can also be mentioned:

1. enabled – when a certain object is marked as active it can be refreshed through the

use of an Update function

2. gameObject – it refers to the object to which the component is attached to

3. tag – it refers to the tag associated to the object (it can be added to more objects at

the same time, as a category descriptor) and it can be used to compare objects

4. transform – offers access to the position, rotation, and scale of the object and to

their manipulation

5. name – it represents the name of a certain object, used for calling it in different

scenarios

Important methods also widely used are:

1. GetComponent(Type objectType)

2. SendMessage(string methodName, object value)

3. Destroy(Object object) – it destroys the object

Journal of Information Systems & Operations Management, Vol. 15.2, December 2021

Pag. 270 / 309

4. DontDestroyOnLoad(Object object) – the object will not be destroyed at the

loading of a new scene

5. Find(string name) – it will identify the respective object [2][8].

3. Unity Tools and Technologies

The C# programming language is a general-purpose language, in the category of “strong

typing” programing languages, component and object oriented. It was developed in 2000

by Microsoft as part of the .NET project and allows programmers to develop applications

that run on top of this system. With the help of C# used within Unity one can define new

component, can extend existing components, can define player interactions as well as

enemy behavior, can model moving objects or it can actually model the entire game

[2][6][7].

Main C# characteristics are:

• Garbage collection – a mechanism that automatically frees the memory occupied

by unused objects

• Exceptions management – offers an organized environment for detection of errors

• Focuses on versioning for ensuring computability of different programs during

development phases

• Through a Microsoft backed project, called Mono, C# became quite versatile from

the point of view of portability. Mono represents an open-source development

platform based on .NET, the ECMA standards for C# and the common

infrastructure language CLI (Command Line Interface). This fact makes possible

the porting of applications on different other platforms, such as Linux-based ones,

macOS, Sony PlayStation or Xbox consoles.

Encapsulation, known also as the concept of “data hiding”, is defined by the grouping of

the code together with the data it manipulates, thus restricting the access to these data from

outside the class. Among the advantaged of the encapsulation method, we mention hiding

the class implementation (code) from external users, flexibility and modularization

possibilities.

C# code is reusable and easily editable. The inheritance concept, within the object-oriented

paradigm, permits the defining of derivative classes from a master class or overloading of

its functions. Polymorphism represents the third basic concept of object-oriented

programming, and it is defined as the overloading of the master class methods in order to

purposely manipulate objects from the derivative class [2][8].

Scripting and its role

Scripts are a key ingredient in implementing any Unity application. A script is built from a

list of commands that are executed by a certain program. Those commands are used to

Journal of Information Systems & Operations Management, Vol. 15.2, December 2021

Pag. 271 / 309

automatize processes. In Unity, C# or JavaScript scripts are attached to scene objects in

order to determine their behavior. For adding a script to an object component, one has to

use the Add Component button from the inspector section. The Unity engine uses for any

implemented script a system of event methods which are predefined (they exist even if not

specifically declared inside the script class). Unity permits developers to create their own

components by using scripts to trigger game events but also to modify game components’

properties [6][8].

A unity script is created and implemented as shown within Figure 2.

Figure 2. Creation of C# script in Unity

The script is created inside the folder selected from the Project panel. By default, Unity will

use Visual Studio for script editing, but one can select any other editor from the Preferences

-> External Tools section (see Figure 3).

Figure 3. Setting the editor for script creation/editing

The initial content of the script file looks like Figure 4. The script makes the link with the

internal Unity engine by implementing a class that derives from the encapsulated Unity

native class MonoBehaviour.

If one attaches a script component to a game object, this creates a new instance of the project

defined object. The name of the class is taken from the name given when creating the script

Journal of Information Systems & Operations Management, Vol. 15.2, December 2021

Pag. 272 / 309

file. The name of the class and the name of the file must be the same in order to allow the

attachment of the script component to the game object [2] – in our example the name used

is “Example1-URA”, as seen inside Figure 4.

The Update() function is the place that hosts the code which will take care of the frame

update for the game object. This process includes the movement, triggering of actions and

answers to user input. It is also very useful to be able to configure variables, read

preferences and create connections with other game objects before any action actually takes

place inside the game. The Start() function is used to cover all initializations and will be

call by Unity before the first call of the Update() function.

Figure 4. Default content of a Unity script

Inside Unity, initializing of an object is not done by using a constructor function, because

the instantiation of the objects is managed by the editor and does not take place at the

beginning of the game only. One can attach a script by dragging the script inside a game

object, from the hierarchical panel or inside the selected game object inspector. The

predefined element acts as a template based on which we can create new instances of that

predefined element. A scene is an interactive “window” from Unity to the current game

being developed. This contains the hierarchy of the inserted objects, the camera, the lights,

the canvas, prefabs etc. Immediately after a scene is created it must be added to the scenes

array, accessible from the File -> Build Settings tabs (see Figure 5).

Journal of Information Systems & Operations Management, Vol. 15.2, December 2021

Pag. 273 / 309

Figure 5. Build Settings tab

The order of the scenes is very important because the passing from one to another can be

done only from top to bottom. The prefab is a template type object which permits the storage

of an object with all its elements, to be later reused anytime one needs. The prefab can be

used as a game object inside scripts, is saved with all its settings, components and added

scripts. Saving a prefab requires overwriting as long as it is not directly accessed from the

prefab editor interface [10].

The Prefab system in Unity allows for creation, configuring, storing of a game object [2][4]

with all its components. If one intends to reuse a game object configured, for example, as a

character or a landscape – in different locations within the same scene or in several distinct

scenes of the project, it must be converted to a prefab. This is a recommended course of

action, and not just the copy/paste procedure for a game object, because the Prefab system

allow for automatic keeping of all copies synchronized. In order to create complex

hierarchies of objects it is useful to imbricate prefabs into other “container” prefabs,

because there is the possibility to overwrite the settings for individual prefab instances. The

use of Prefab system is also useful when one needs to instantiate game objects. In order to

instantiate a prefab during execution time, the code of the script must contain a reference

to that respective prefab. One can create this reference by creating a public variable inside

the code for storing the Prefab reference. The public variable from within the code is shown

as an attributed field inside the Inspector. Later, we can assign the real prefab that we want

to use, inside the Inspector.

Lights and lightning inside Unity game engine

Journal of Information Systems & Operations Management, Vol. 15.2, December 2021

Pag. 274 / 309

The Unity game developers can create a very realistic lightning that matches very well to a

vast array of art styles. In Unity lightning is implemented by approximating the way real

light behaves in the real world, because Unity uses very details models about lightning

processes for an as realistic result as possible, or simplified models for a more stylized

result. The lightning created inside Unity can be direct or indirect and for more realistic

lightning results, one must simulate both direct and indirect light sources. The direct light

is the light that is emitted, hits a surface and it then reflected directly into a sensor (e.g., a

camera). Indirect lightning represents the light that hits different surfaces more times or the

sky lightning [2]. Unity can calculate direct illumination, indirect illumination or both

direct/indirect illumination and the techniques used by Unity depend on the mode the game

creator configures the Unity project settings. Instruments for illuminating the scene use

quite easy to configure parameters, as observable from Figure 6.

Figure 6. Panel for setting lightning parameters

The main properties used for defining lightning in Unity are also shown in Figure 7.

Journal of Information Systems & Operations Management, Vol. 15.2, December 2021

Pag. 275 / 309

Figure 7. Light types in Unity

Identifying main characteristics for different types of lightning

• Point lights

A point light is localized in space in a certain, individual/single point. This type of light

sends the light towards all directions (in a spherical shape) in equal parts, as shown in Figure

8. This correlation is known as the “law of the inverse of the square” and it is similar to the

way real light behaves in real world. The point lines are useful for simulating lamps and

other local light sources within a scene and can be used to create sparks or explosions for

convincingly illuminate the surroundings inside a game environment [2].

Figure 8. Point Light in Unity

• Spotlight

A spotlight has a specified location and a set interval after which the light goes off.

Nevertheless, the spotlight is limited to an angle, which creates a cone-shaped illumination

region. The center of the cone indicates the forward direction (Z) of the lightning object.

The light diminishes, also, towards the margins of the light cone. The spotlights are used

for artificial light sources, such as lanterns, headlights etc [2]. The settings for the spotlight

illumination are shown in Figure 9.

Figure 9. Spotlight in Unity

Journal of Information Systems & Operations Management, Vol. 15.2, December 2021

Pag. 276 / 309

• Directional lights

Directional lights are used to create effects, like the sun light, and can pe deployed as far-

away light sources, which exist somewhere at an infinite distance from the objects. All

objects inside the scene are illuminated like in a scenario where the light always comes

from the same and one direction. The distance between the light and the object being

enlightened is not specifically defined, thus the light intensity remains unchanged all the

time. Directional lights represent big, far-away, sources of light that come from somewhere

“outside” of the world envisioned inside the game-development project. Inside realistic

scenes, this approach would be used in order to simulate the sun’s or the moon’s light, while

in abstract games this type of lights would allow shades addition without specifying an

exact source of lighting [2].

By default, each new Unity scene contains a directional light. Rotation of the default

directional light (the “sun”) triggers the “skybox” update. When the light would be inclined

laterally, but still parallel to the ground-line, the sunset-like effects can be obtained.

Moreover, directing the light towards up makes the sky dark, as if the scene time would be

night. With the light inclined down, the sky inside the game-development project will

resemble normal/real daylight conditions. In case the skybox element is selected by the

developer as Ambiental source, the Ambient Light will be changed in correlation with its

colors (see Figure 10).

Figure 10. Directional lights in Unity

• Zonal lightning

An area-light is in fact defined by a rectangle-shape in space. In this case, the light which

would be emitted is spread towards all directions, in a uniform manner on the surfaces, but

only from one side of the rectangle. There is no manual control for the range of a lighting

area, even if the light intensity will diminish according to the inverse square rule, as it

Journal of Information Systems & Operations Management, Vol. 15.2, December 2021

Pag. 277 / 309

moves away from the source. The setting of an area light parameters can be seen in Figure

11.

Figure 11. Area Light in Unity

4. Users’ attitude to the Unity game engine

Because the evolution of computer/electronic games is a very fast paced one, we were

interested in identifying the users’ interest, especially within the current pandemic context,

towards the game development technologies. By analyzing Figure 12, we can see a

comparison of some of the most widely used technologies in this field: Unity, Blender and

Maya, from the point of view of the Google engine searches of these elements in Romania.

The Unity technology, probably due to its flexibility and intuitive approach, ranks first.

Journal of Information Systems & Operations Management, Vol. 15.2, December 2021

Pag. 278 / 309

Figure 12. Evolution of Unity, Blender, Maya game development technologies searches

according to Google Trends (for Romania)

Inside Figure 13 we can observe the worldwide users’ interest towards Unity technology,

in comparison with the other two technologies chosen, and the place of Romanian users

on this search statistics. Again, Unity is way over the other two technologies, in several

points even overpassing the sum of both other variants put together.

Journal of Information Systems & Operations Management, Vol. 15.2, December 2021

Pag. 279 / 309

Figure 13. Last 12 months comparison for the Google searches on the Unity, Blender

and Maya game development technologies

Considering the Unity Technologies Report of 2021124, if we consider the entire niche of

applications developed for mobile devices, the Unity engine usage amounts to a

staggering 61% of the market. The second most widely used solution, based on

native/custom engines is only rated at 15%, and the third option is represented by

GameMaker Studio / Unreal / AppGameKit all with a share of 5% (see Figure 14).

Figure 14. Unity engine market share for mobile devices applications,

as of 2021 Gaming Report from Unity Technologies

Going a little bit more in depth with the analysis of the Unity game engine technology

usage today, based on the AppBrain125 public statistics, we can certainly argue that Unity

124 https://create.unity3d.com/2021-game-report
125 https://www.appbrain.com/

Journal of Information Systems & Operations Management, Vol. 15.2, December 2021

Pag. 280 / 309

is by far the most widely used solution for game development also for the Android apps

niche, available through the Google Play store. As we can see in Figure 15, the Unity-

based games from the Google Store cover almost 12% of the total number of listed

applications in this category. Moreover, the total number if installs is even bigger,

amounting to 16.16%.

As a further argument for the prominence of this game development technology, Unity

has a market share of over one third of the most important apps in Google Store (top 500,

as listed on December 9, 2021).

Figure 15. Market share statistics for Unity games in Google Play store126

Supporting the previous statements regarding the increased interest in Unity during the

current pandemic context, the statistics show a strong Unity-based batch of new

applications coming to the Google Play store constantly. No less than 35.41% of the new

applications published during the last 30 days127 inside the Google Play store were built

upon the Unity game engine.

Next, seeing the game platform development from the business point of view – for its users

– we have researched the different monetization solutions available to the developers.

Within this category of applications there are two main concepts used for monetization

purposes: ads and in-app purchases. In Figure 16 we have the picture of the current

advertising providers for the mobile applications. Even though the first place is

unsurprisingly held by Google and the third place in the medalists’ top is also not a surprise

with Facebook, the second-place contender is again Unity. The ease of use and seamless

integration into the Unity engine, together with the ever-increasing diversity of available

advertisements and the new tools and features of the latest Unity engine iterations made it

possible for Unity to compete on par with the two greatest companies in the field at this

moment.

126 https://www.appbrain.com/stats/libraries/details/unity/unity-3d
127 as of December 9, 2021

Journal of Information Systems & Operations Management, Vol. 15.2, December 2021

Pag. 281 / 309

Figure 16. Advertisements providers for mobile applications in 2020,

as of 2021 Gaming Report from Unity Technologies

The second solution for monetizing one Unity developed application is through the use on

in-app purchases. For this path, Unity offers the possibility of the developers implementing

in-app purchases on their own. Nevertheless, all professionals are almost unanimously in

accord that this solution would be the best way. Inside the Unity engine environment there

are several established plugins, widely used and trusted, that can take care of most technical

aspects of the implementation of such a system. These plugins offer all the same basic

features, the difference being usually made on five key aspects:

• only including an in-app purchases library or including an entire framework that

supports creation of an fully fledged in-game economic system

• platform availability, some plugins being cross-platform while others are targeting

only a certain platform

• support, as some plugins have only limited support (at least for the free/entry level

versions) while others offer producer’s support and/or community support

• market-share, as some plugins are more popular than others

• pricing, as everybody is in the end interested in the best ROI possible for their

acquisition of a certain software element to increase future income; some plugins

are free, some have free and paid versions, and some are only available as

commercial versions.

Journal of Information Systems & Operations Management, Vol. 15.2, December 2021

Pag. 282 / 309

Among the best plugins available for in-app purchases monetization within Unity we can

mention:

- Prime31128 – a long-time established plugin, very popular, with different versions

for Android and MacOS, offering an in-app purchases library

- Unibill129 – a popular in-app purchases library with cross-platform capability,

available to handle simultaneously Apple’s App Store, Google Play, Amazon,

Samsung, and Windows Store

- IronSource130 – a cross-platform plugin with extended capabilities as both in-app

purchases library and fully fledged SDK for building an entire in-game economy

system.

5. Conclusions

Unity offers its users the possibility to create 2D and 3D games, based on a game engine

that contains a basic API for scripts written in C#. Unity provides support for bump

mapping, reflection mapping, parallax mapping, spatial occlusion on the screen, dynamic

shadows using shadow maps but also full-screen post-processing effects. The game

developers can become editors within the assets shop and can even sell their creation

thorough it. Unity Assets Store can be visited from the Unity website as well as directly

from the Unity Game Engine. Today, especially within the pandemic context which

overwhelmed the entire world with online/electronic content, there is a clear trend towards

using and developing game engine platforms. This fact is supported also by the search terms

analysis from the Google search engine for Romania. By comparing the evolution of

searches regarding Unity, Blender and Maya game development technologies, as reported

by the Google Trends tool, and presented in Figures 12 and 13, we can discern a seasonal

trend for Romanian users. This fact is due to the influence of the periods of time during

which educational activities are more active.

Bibliography

[1] Tsai, Y.T., Jhu, W.Y., (...), Chen, C.Y., Unity game engine: interactive software design

using digital glove for virtual reality baseball pitch training, Microsystem Technologies-

Micro-And Nanosystems-Information Storage And Processing Systems, 27 (4), pp.1401-

1417, Apr 2021

[2] https://unity.com/learn

[3] Goldstone, W., Unity Game Development Essentials, Packt Publishing Ltd., ISBN 978-

1-847198-18-1, UK, 2009

128 https://prime31.com/
129 http://outlinegames.com/
130 https://www.is.com/

Journal of Information Systems & Operations Management, Vol. 15.2, December 2021

Pag. 283 / 309

[4] Menard, M. and Wagstaff, B., Game development with Unity. Nelson Education, 2015

[5] Valcasara, N., Unreal Engine Game Development Blueprints. Packt Publishing Ltd.,

2015

[6] Hocking, J., Unity in Action: Multiplatform Game Development in C# with Unity 5,

1st Edition, Manning Publications, 2015

[7] Murray, J., C# Game Programming Cookbook for Unity 3D, CRC Press, 2014

[8] Thorn, A., Pro Unity Game Development with C#. Berkeley, CA: Apress, ISBN: 978-

1-4302-6745-4, New York, 2014

[9] Dickson, P.E. et al., An experience-based comparison of unity and unreal for a stand-

alone 3D game development course. In: Proceedings of the 2017 ACM Conference on

Innovation and Technology in Computer Science Education, pp. 70–75, 2017

[10] Blackman, S., Begining 3D game development with Unity: World’s most widely used

multi-platform game engine, Apress, 1st Edition, ISBN: 978-1-4302-3423-4, 2011.

	1_JISOM 15.2 (in work) - Front
	2_JISOM 15.2 (in work) - Content

