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ABSTRACT 

In this paper, we have researched and developed solutions for optimizing the radix sort 
algorithmic function using the Compute Unified Device Architecture (CUDA). The radix 
sort is a common parallel primitive, an essential building block for many data processing 
algorithms, whose optimization improves the performance of a wide class of parallel 
algorithms useful in data processing. A particular interest in our research was to develop 
solutions for optimizing the radix sort algorithmic function that offers optimal solutions 
over an entire range of CUDA enabled GPUs: Tesla GT200, Fermi GF100 and the latest 
Kepler GK104 architecture, released on March 2012. In order to confirm the utility of the 
developed optimization solutions, we have extensively benchmarked and evaluated the 
performance of the radix sort algorithmic function in CUDA. 

Keywords: parallel processing, CUDA, GK104, threads, shared memory. 

1. INTRODUCTION 

The radix sort is an important algorithmic function, a primitive building block, useful in 
many algorithms that benefit from massive parallelism [1], [2], [3], [4]. Its huge importance 
has led to the development of efficient sorting algorithms on a variety of parallel 
architectures. A wide class of data processing algorithms uses sorting routines, thus creating 
both an opportunity and a necessity to optimize the sorting operations. The sorting 
operations are essential in geographic information systems, in computer graphics, in 
database systems, as they represent the basis for building spatial data structures [5]. Also, 
efficient sorting routines are of paramount importance in problems regarding web mining 
[6], in implementing algorithms such as parallel programming models based on MapReduce 
[7], in sparse matrix multiplication or issues regarding network security improvement [8]. 
Therefore, it is very important to implement efficient sorting routines on various 
programming platforms. The continuous evolution of the computer hardware architectures 
provides an increased computational processing power and therefore it imposes the 
necessity of the on-going development of efficient sorting techniques on these new 
architectures [9].   

Of all the sorting algorithms, the radix sort is among the oldest, probably the best known 
algorithm and its sequential variants are one of the most efficient variants in sorting small 
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keys. The elements that are being processed by the radix sort algorithm are usually called 
“keys” and they can exist independently or can be associated with other data. The algorithm 
considers the keys as ݇-digit numbers and sorts one digit at a time. It sorts the data by 
grouping the individual digits keys that share the same significant position and value. There 
are two types of radix sort: 

 LSD - least significant digit, that processes the elements starting from the least 
significant digit and moves towards the most significant one;  

 MSD - most significant digit, that processes the elements starting from the most 
significant digit and moves towards the least significant one.  

Using specific information related to the nature of the keys, the algorithm performs their 
sorting. In the case of LSD sorting, we consider ܽ ൌ ሺܽଵ, ܽଶ, … , ܽሻ and ܾ ൌ ሺܾଵ, ܾଶ, … , ܾሻ 
two keys, ܽ, ܾ positive integers, for each ݅ ൌ 1,… , ݊.  The key ܽ is lower than the key ܾ	if 
there is a natural number ݇	between 1 and ݊ such that ܽଵ ൌ ܾଵ, ܽଶ ൌ ܾଶ,..., but	ܽ ൏ ܾ. 
In this case, the radix sort first takes into account the least significant field, meaning the ݊-
th digit, then the ሺ݊ െ 1ሻ–th and so on, until it reaches the most significant field, the first 
one on the left.  

For example, when using the ascending LSD radix sorting of the keys 8788, 23469, 6257 
and 13, the algorithm uses the following steps: 

 the keys are written in the same format (corresponding to the number with the most 
digits), ie: 08788, 23469, 06257	and	00013; 

 the least significant field is considered the one corresponding to the least significant 
digit and since we have chosen the LSD sorting, the keys are ordered starting from 
the last digit, so 3	 ൏ 7	 ൏ 8	 ൏ 9 determines the order: 00013 ൏ 06257 ൏
08788 ൏ 23469; 

 passing to the next field, represented by the second digit from right to left, the 
digits’ order is 1 ൏ 5 ൏ 6 ൏ 8, thus obtaining a reordering: 00013 ൏ 06257 ൏
23469 ൏ 08788; 

 at the next digit, the order is 0 ൏ 2 ൏ 4 ൏ 7 and thus the above obtained ordering 
is kept: 00013	 ൏ 06257 ൏ 23469 ൏ 08788; 

 at the next step, 0 ൏ 3 ൏ 6 ൏ 8, and thus is obtained the reordering: 00013 ൏
23469 ൏ 06257 ൏ 08788; 

 in the last step, 0 ൏ 2, and we obtain the order: 00013 ൏ 06257 ൏ 08788 ൏
23469. 

In conclusion, the ascending LSD radix sort of the initial key sequence 
8788, 23469, 6257,13 is: 00013 ൏ 06257 ൏ 08788 ൏ 23469. 

2. DESIGNING AN EFFICIENT RADIX SORT ALGORITHMIC FUNCTION 
IN CUDA 

The graphic processing units (GPUs), based on the Compute Unified Device Architecture 
(CUDA), provide an increased computational capacity, a major potential in developing high 
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performance sorting routines. The GPUs excel in processing large data sets that often 
require sorting or partitioning operations. Multi-GPU configurations in which data and 
tasks are distributed across multiple nodes offer very important solutions in situations when 
multiple operations must be performed on the data set: sorting, reduction, compaction and 
partitioning. 

The efficiency of the sorting routines influences the applications’ performance, 
significantly improving the memory bandwidth in those problems that involve pointer 
addressing or lookup tables. Sorting routines are parallelizable and involve fine 
computational granularity that facilitates their implementation on the GPUs, but raises 
significant challenges compared to classic multiple central processing units (CPUs) 
implementations. The implementation’s technical difficulties are mainly generated by the 
lack of hardware synchronization mechanisms for fine-grain data or the lack of large size 
memory buffers (cache) that facilitate the uniform access to the memory. 

The development of efficient sorting algorithmic functions on GPUs is a solution for a wide 
range of problems using sorting routines: binary search, finding the closest pair, 
determining the uniqueness of an item, determining the ݇ -th element of a sequence of sorted 
elements, identifying outliers in a sequence. Efficient sorting routines are also useful for 
large-scale problems in distributed systems (eg. crossing graph algorithms in clusters and 
supercomputers) [10]. 

Sorting is a basic functional block used in ݇ܦ trees, octal trees, tree structures on sets of 
geometric objects. These structures are involved in modelling physical systems such as 
molecular dynamics, methods for computing the trajectory of a wave or of a particle in a 
system, collision detection [11], photon mapping, modelling three-dimensional objects, 
fluid mechanics simulations, ݊-body systems. Other sorting applications based on GPU 
units are related to image rendering, including shadow modelling, transparency, graphic 
rendering, animation and texture compression. GPU radix sorting was implemented in 
parallel hashing tables, accelerating databases, data processing engines and even in video 
games engines. 

We have designed, depending on the GPU’s architecture, a self-adjustable and self-
configurable parallel radix sort algorithmic function, that allocates resources like the 
dimension of the grid blocks, of the blocks of threads and processed elements per thread. 
We have obtained a solution that has a high level of performance on the most important 
CUDA enabled graphic processing units (Tesla GT200, Fermi GF100, Kepler GK104 
launched in 2008, 2010 and in 2012). 

As GPUs use thousands of concurrent execution threads to process tasks, the efficient 
designing of algorithms running on these processors must take into account the parallelism 
within these threads. Thus, algorithms must be designed as to properly balance the number 
of tasks and their granularity.  
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In order to design at the block level an efficient radix sort algorithmic function in CUDA, 
we have used the shared memory provided by the GPU’s architecture, harnessing its 
increased speed and reduced latency. We have used the GPU’s memory to locally order 
data for improving the coherence, thus optimizing the memory bandwidth’s usage in the 
radix sort algorithmic function. 

In the following, we consider the case when elements are being processed from the least 
significant digit to the most significant one (LSD). Our research refers to sorting sequences 
of key-value pairs. In each step of the radix sort, we have used a counting sort or a bucket 
sort [1]. Each digit is a sequence of bits in the key. For each key’s digit, we have computed 
the number of keys whose digits are lower, plus the number of keys with the same digits 
that appear earlier in the sequence. This is the index at which the output element will be 
written, called the element’s rank. After having computed each element’s rank, the step 
ends by writing each element in its appropriate position in the output vector. Sorting each 
digit from the least significant to the most significant one will result in the sorted sequence 
after having processed all the sorting steps. 

The radix sort parallelization is achieved by reducing the counting sort technique used in 
each step at a parallel prefix sum [12]. This is one of the main optimization solutions that 
we have implemented in order to improve the performance of the parallel radix sort function 
in CUDA, because we have used the parallel prefix sum algorithmic function that we have 
already optimized, benefiting from its high level of performance [13]. 

The easiest and most intuitive technique based on the parallel prefix sum is to sort in each 
moment one of the keys’ bits and this represents a splitting operation [12]. This approach 
has the disadvantage that it is not efficient when data arrays are stored in the external 
DRAM memory [14]. 

For 32-bit keys, 32 reordering operations are required in order to sort the whole sequence. 
Data transfers from/to external memory consume considerable computational resources, so 
it is preferable to avoid these data transfers as much as possible. A natural way to reduce 
the number of reordering operations is to take into account more than 1 bit per each 
crossing. In order to do this efficiently, each block of threads builds a histogram that counts 
the occurrences of numbers in its allocated data portion and finally they are processed using 
the parallel prefix sum [12]. Le Grand and He have implemented in CUDA this kind of 
techniques [15], [16]. Although they are more efficient than the one that sorts keys one bit 
at a time, these techniques also have disadvantages, as the external memory bandwidth is 
not efficiently used. Although the global memory is less accessed, reordering operations 
are still needed to be applied on the sequence, through which consecutive elements of the 
sequence need to be written in different memory areas. This procedure causes significant 
losses, due to the management of the available bandwidth. 

In order to optimize the radix sort, we have first divided the sequence into tiles that have 
been assigned to a number of  thread blocks. Thus, we have efficiently used the memory 
bandwidth reducing the number of reordering operations in the global memory, allocating 
more than one bit for each crossing of the sequence, maximizing the reordering coherence, 
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using the GPU’s shared memory in order to locally sort data. Thus, reordered data is written 
in the GPU’s memory that is much faster than the external one (with about 2 magnitude 
orders). 

We have implemented the radix sort algorithmic function in four steps. Between the steps, 
the global synchronization is required, but this is not possible in CUDA. Therefore, each 
step corresponds to a separate call of the parallel kernel function [12]. 

The steps of the radix sort algorithmic function are: 

Step 1. Each thread block loads and sorts its data portion in the GPU’s memory 
using b	iterations per bit.  

Step 2. Each block of threads writes its 2ୠ histogram entries and its part of sorted 
data in the global memory. 

Step 3. A parallel prefix sum is performed over the p ∙ 2ୠ	 histograms to compute 
the output elements, using the GPU optimized parallel prefix sum described in [13]. 

Step 4. Using the results obtained in the Step 3, each thread block copies its 
elements in their correct output position. 

In designing the radix sort algorithmic function, we have used ݐ	 ൌ 	512 thread blocks, a 
number chosen after numerous experimental tests so that the function provides maximum 
performance. Regarding the number of processed elements per thread, the intuitive version 
is to assign one element per each thread, but handling a larger number of elements per 
thread is actually more efficient. We have chosen the option to process 4 elements per 
thread or 2048 elements per block. In Step3, the radix sort algorithm processes 8 elements 
per thread for the GTX 280 GPU, 16 for the GTX 480 GPU and 32 for the GTX 680 GPU, 
as we have called the GPU optimized parallel prefix sum function [13]. 

The sequential processing of several independent computations within each thread 
improves the overall efficiency and offers possibilities to reduce the latency. Since each 
block processes a portion of 2048 elements, we have chosen the total number of blocks 
needed to process the entire sequence (having ݊ elements) as follows: 

 ൌ ቐ
ቂ 

ଶସ଼
ቃ  1, ݊	݂݅	ݎ	2	݂	ݎ݁ݓ	ܽ	ݐ݊	ݏ݅	݊	݂݅ ൏ 2048


ଶସ଼
, ݊	݀݊ܽ	2	݂	ݎ݁ݓ	ܽ	ݏ݅		݊	݂݅  	2048

. 

The choice of ܾ (the number of iterations per bit) is determined by two factors. We have 
used a pre-sorting of each data portion in Step 1 in order to limit the reordering operations 
in Step 4 at only 2 neighboring blocks. Higher values of ܾ lead to a decreased coherence 
of the reordering. On the other hand, too small values of ܾ lead to a large number of data 
rearrangement operations in the global memory. 

Each thread block processes a number of elements proportionally to the number of the 
threads per block. We have determined empirically that choosing	ܾ	 ൌ 	4, we obtain the 
best balance between these factors and the best overall performance [9]. 
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We have designed the radix sort algorithmic function to accept the following data types for 
the keys: integer, unsigned integer, float, double, long long, unsigned long long. Our 
solution offers the possibility to first set the parameters of a configuration structure that are 
afterwards passed as calling parameters along with the input vector containing the keys, 
with the input vector containing the values and with the number of elements.  

In the following, we present a series of optimization solutions that we have used in 
developing the radix sort algorithmic function using the Compute Unified Device 
Architecture. 

3. SOLUTIONS FOR OPTIMIZING THE PERFORMANCE OF THE RADIX 
SORT ALGORITHMIC FUNCTION IN CUDA 

In order to obtain an optimized version of the parallel radix sort algorithmic function, we 
have developed a series of solutions for optimizing the performance of this function in 
CUDA.  

Solution 1 – using the shared memory. In order to obtain an efficient parallel radix sort 
algorithmic function, we have used the shared memory provided by the latest generations 
of CUDA GPUs. In this way, we have locally reordered data to improve the coherence that 
has optimized the bandwidth usage in the radix sort algorithmic function, taking advantage 
of the low response time and improved memory bandwidth offered by this type of memory. 

Solution 2 - balancing tasks using the fine-grain parallelism. In order to successfully 
use the thousands of parallel threads provided by the CUDA architecture, in designing the 
parallel radix sort function, we have implemented the fine-grain parallelism that results in 
a proper balance of the tasks and their granularity. The tasks’ decomposition generates a 
corresponding computational load so that the potential of all the computational cores is 
fully utilized during the execution. 

Solution 3 - calling the optimized parallel prefix sum function developed in CUDA. In 
designing an efficient radix sort algorithmic function, we have parallelized the counting 
sort technique used in the Step 3 of the algorithm by reducing it to a parallel prefix sum. 
Therefore, in the Step 3 of the radix sort algorithmic function, we have used the optimized 
parallel prefix sum algorithmic function developed in CUDA [13]. This is the most 
important optimization technique applied in designing the radix sort algorithmic function 
and therefore we have obtained a performance improvement of up to 14% compared to the 
case when processing this step sequentially on a central processing unit. 

Solution 4 – the sequential processing of several independent computations within 
each execution thread. By applying this solution in designing the parallel radix sort 
algorithmic function, we have improved the overall efficiency of parallel computations, 
thus providing more opportunities to reduce the latency. 

Solution 5 - minimizing data transfers between the host and the device. Given that data 
transfers between the host and the device consume considerable computational resources, 
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we have designed the radix sort algorithmic function so that data transfers between the host 
and the device are minimal.  

Solution 6 – optimizing the memory bandwidth. To design an efficient radix sort 
algorithmic function, we have first divided the input data into smaller fragments allocated 
to the thread blocks. The main purpose for which we have made this partitioning is the 
efficient usage of the memory bandwidth. Therefore, we have obtained: 

 the reduction of the global memory calls, allocating more than one bit to each 
crossing of the sequence  

 maximizing the reordering coherence using the GPU’s shared memory in order to 
locally sort data, that replaces the writing of reordered data from the external 
memory with writing reordered data in the GPU’s memory, that is about two orders 
of magnitude faster. 

The designing techniques that we have used in this section, in the context of running on 
GPUs, are also applicable to other graphic processors with more execution cores than the 
ones we had available in our benchmarks.  

In the following, we analyze the performance of the radix sort algorithmic function that we 
have developed and optimized in CUDA using the above presented solutions.  

4. THE EXPERIMENTAL RESULTS AND THE PERFORMANCE 
ANALYSIS OF THE RADIX SORT ALGORITHMIC FUNCTION IN 
CUDA 

 
For analyzing the performance of the parallel radix sort algorithmic function, we have used: 

 the Windows 7 64-bit operating system;  
 the Intel i7-2600K CPU, overclocked at 4.6 GHz; 
 2x4 GB DDR3 dual channel RAM memory, running at a frequency of 1333 MHz; 
 the GeForce GTX 280 from the GT200 architecture, the GTX 480 from the Fermi 

architecture and the GTX 680 from the Kepler architecture  
 the CUDA toolkit 4.1 for programming the GPUs 
 for the GTX 280 and GTX 480 GPUs, the driver version 270.81  
 for the GTX 680 GPU, the driver version 300.1.  

The complexity of each developed application influences the transfer times between the 
CPU and the GPU. This is the reason why we have measured only the time corresponding 
to the data processing and we have not included the transfer times. In this context we have 
used the CUDA API (application programming interface) in order to measure the average 
execution time that the GPU spends for processing the data during the execution of the 
radix sort algorithmic function. Other methods, like those based on the operating system’s 
timers, have the disadvantage of including in their measurements variations and latency 
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from different sources that would have compromised the results. In addition, computations 
can be asynchronously performed on the host while the GPU kernel runs and the only way 
to measure the necessary time for the host computations is to use the CPU or the operating 
system timing mechanism. In this way, we get a reliable measurement of the execution time 
for computing the above described radix sort algorithmic function [13]. 

We have first evaluated the execution times obtained by applying the radix sort algorithmic 
function on key-value pairs of various sizes (35-60,000,000) and float type elements. Using 
a random number generator, we have obtained the input data, consisting of 26 vectors of 
key-value pairs. The keys are of float data type, allocated in an ascending order.  In order 
to obtain accurate results, we have computed the average of 10,000 iterations of the parallel 
radix sort algorithmic function run on the three GPUs and on the CPU.  

For each input vector’s size and each of the four processors, we have computed the 
execution time and the memory bandwidth (Table 1, Table 2). We have measured the 
execution time in milliseconds (ms) and the memory bandwidth in GB/s.  

 

Table 1. The experimental results for the radix sort algorithmic function (execution time) 

Test 
No. 

Number of 
elements 

Execution time (ms) 

CPU GTX 280 GTX 480 GTX 680 

1 35 0.000308 3.271094 0.911673 0.852586 
2 128 0.000519 3.237406 0.980564 0.806586 
3 256 0.001008 3.331148 0.943952 0.781448 
4 260 0.001373 3.323932 0.945672 0.762190 
5 512 0.001992 3.286394 1.039153 0.826186 
6 1000 0.004389 3.401922 0.95746 0.801103 
7 1024 0.004836 3.348141 1.103351 0.838858 
8 1030 0.003997 5.159959 1.28986 1.077253 
9 32768 0.144484 6.353939 1.197392 0.952060 
10 45555 0.197665 6.469057 1.188689 1.147154 
11 65536 0.305246 6.507369 1.179774 1.068354 
12 131072 0.632163 6.684911 1.588619 1.292114 
13 262144 1.348589 8.600079 1.940587 1.480067 
14 500111 2.696119 9.268106 2.310846 1.407021 
15 524288 2.738219 9.308323 2.264077 1.357708 
16 1048555 8.196775 10.551018 3.057081 1.960797 
17 1048576 8.586647 10.574672 2.92803 1.929766 
18 1048581 8.622486 10.573973 2.981098 1.964001 
19 2097152 28.618340 13.03183 4.3827 2.867482 
20 2097999 28.238203 13.059888 4.41974 2.968492 
21 4194334 65.020836 17.939398 7.238373 4.911704 
22 8388600 137.395126 27.824905 12.848075 9.042197 
23 16000000 269.111176 47.711851 24.198442 15.201030 
24 32000000 549.668030 85.512920 45.815244 29.554805 
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25 48000000 827.618652 119.112119 66.763672 43.802071 
26 60000000 1055.027710 163.922578 83.702705 54.588300 
Total execution time – 
10.000 tests (h) 

8.317 1.670 0.773 0.512 

The system’s power 
(kW) 

0.198 0.306 0.358 0.307 

Total energy 
consumption  (kWh) 

1.647 0.511 0.277 0.157 

The GPU’s consumption compared to 
the CPU’s 

3 times lower 5 times lower 10 times lower 

Table 2. The experimental results for the radix sort algorithmic function (memory bandwidth) 

Test 
No. 

Number of 
elements 

The memory bandwidth (GB/s) 

CPU GTX 280 GTX 480 GTX 680 

1 35 0.4545 0.0001 0.0002 0.0002 
2 128 0.9865 0.0002 0.0005 0.0006 
3 256 1.0159 0.0003 0.0011 0.0013 
4 260 0.7575 0.0003 0.0011 0.0014 
5 512 1.0281 0.0006 0.0020 0.0025 
6 1000 0.9114 0.0012 0.0042 0.0050 
7 1024 0.8470 0.0012 0.0037 0.0049 
8 1030 1.0308 0.0008 0.0032 0.0038 
9 32768 0.9072 0.0206 0.1095 0.1377 
10 45555 0.9219 0.0282 0.1533 0.1588 
11 65536 0.8588 0.0403 0.2222 0.2454 
12 131072 0.8294 0.0784 0.3300 0.4058 
13 262144 0.7775 0.1219 0.5403 0.7085 
14 500111 0.7420 0.2158 0.8657 1.4218 
15 524288 0.7659 0.2253 0.9263 1.5446 
16 1048555 0.5117 0.3975 1.3720 2.1390 
17 1048576 0.4885 0.3966 1.4325 2.1735 
18 1048581 0.4864 0.3967 1.4070 2.1356 
19 2097152 0.2931 0.6437 1.9140 2.9254 
20 2097999 0.2972 0.6426 1.8988 2.8270 
21 4194334 0.2580 0.9352 2.3178 3.4158 
22 8388600 0.2442 1.2059 2.6116 3.7109 
23 16000000 0.2378 1.3414 2.6448 4.2102 
24 32000000 0.2329 1.4968 2.7938 4.3309 
25 48000000 0.2320 1.6119 2.8758 4.3834 
26 60000000 0.2275 1.4641 2.8673 4.3965 

 
For each of the 26 dimensions of the input vectors we have computed the total execution 
time of the 10,000 iterations. Using an energy consumption meter device (Voltcraft Energy 
Logger 4000) we have measured the system’s power (kW) and the total energy consumption 
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in each of the four analyzed cases (running the tests on the CPU and on the three GPUs). 
Analysing the obtained results, we have noticed that running the test suite on the GTX 280 
GPU, determines a system power consumption 3 times lower than when running the suite 
on the central processing unit. When running the suite on the GTX 480, the power 
consumption is 5 times lower, on the GTX 680 the consumption is 10 times lower than 
when running the benchmark suite on the central processing unit. The obtained 
experimental results reflect an increased economic efficiency through the reduced energy 
consumption and highlight a high level of performance through the reduced execution times 
when running the test suite of the parallel radix sort algorithmic function on graphics 
processors compared to the sequential version run on the central processing unit. 

We have first analysed the obtained experimental results by running the radix sort 
algorithmic function, regarding the execution time and memory bandwidth, corresponding 
to each of the four processors, when the input array has a relatively low dimension (35-
262,144 elements). By analysing and comparing the experimental results, we have found 
that for an input vector containing a number of 35-262,144 elements, the best results (lower 
execution time, higher bandwidth) are obtained when running the radix sort function on the 
central processing unit, then on GTX 680, GTX 480 and GTX 280. This happens because 
in this case it has not been generated an enough computational load in order to use the huge 
parallel processing capacity of the GPUs (Figure 1, Figure 2). 

 

 
Figure 1. The execution time: 35-262,144 

elements of the input array 
Figure 2. The memory bandwidth: 35-262,144 

elements of the input array 

 

When the number of key-value pairs of the input vector is between 500,111 and 60,000,000 
elements, the best results (lower execution time, higher bandwidth) are obtained when 
running the radix sort algorithmic function on the GTX 680, then on the GTX 480, on the 
GTX 280 and on the CPU. This time, it has been generated a sufficient computational load 
that fully employs the huge parallel processing capacity of the GPUs (Figure 3, Figure 4). 
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Figure 3. The execution time: 500,111-
60,000,000 elements of the input array 

Figure 4. The memory bandwidth: 500,111-
60,000,000 elements of the input array 

 

In the next set of tests, we have evaluated the influence of the generated data types on the 
performance of our radix sort algorithmic function, run on the GTX 680 GPU. We have 
designed the algorithm to allow the selection of the data type of the input array components, 
which can be integer, unsigned integer, float, double, long long or unsigned long long. We 
have first highlighted the execution time variation depending on the input vector’s data 
types (Figure 5). For measuring accurate results, we have computed the average of 10,000 
iterations. We have obtained similar performance in the cases when the keys are of integer, 
unsigned integer or float data type, the execution time ranging from 0.798116 ms to 
58.405197 ms. If the keys are of double, long long or unsigned long long type, the execution 
times are generally higher than in the three cases mentioned above, ranging from 1.42692 
ms to 140.848443 ms. This is justified taking into account the amount of necessary memory 
required by the analysed data types. We have then highlighted the bandwidth variation 
depending on the input vector’s data types (Figure 6). Regarding the bandwidth, we have 
noticed that the performance is comparable in all the six considered cases, reflecting the 
efficiency of the optimization solutions applied to the parallel radix sort algorithmic 
function that provides a high data processing speed, regardless of the considered data type. 
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Figure 5. The influence of the data typeson the 
execution time 

Figure 6. The influence of the data types on 
the memory bandwidth 

 

The above described experimental results emphasize that our solutions for optimizing the 
parallel radix sort algorithmic function are efficient and thus, the function provides 
optimum results in different situations, proving to be useful in a wide range of data 
processing applications and algorithms.  

5. PERSONAL CONTRIBUTIONS AND CONCLUSIONS 

In this paper, we have analysed, developed and designed the radix sort algorithmic function, 
depicting first the algorithm’s steps, then its CUDA implementation and a series of 
optimization solutions for improving the performance of the radix sort algorithmic function. 
These optimization solutions are:  

 using the shared memory;  
 balancing tasks using the fine-grain parallelism;  
 calling the optimized parallel prefix sum function developed in CUDA;  
 the sequential processing of several independent computations within each 

execution thread;  
 minimizing data transfers between the host and the device;  
 optimizing the memory bandwidth. 

We have analyzed the performance of the radix sort algorithmic function in CUDA, using 
a series of experimental tests and we have compared it with an alternative approach run on 
the central processing unit. In order to compute the average execution time of the graphic 
processing unit, we have used the CUDA application programming interface (API). After 
having analyzed the experimental results obtained by using the solutions for optimizing the 
performance of the radix sort algorithmic function, we have noticed the following: 

 Measuring the total energy consumption in each of the four analysed cases (when 
running the tests on the CPU and on the three GPUs), we have noticed that when 
running the radix sort algorithmic function on the GTX 280 GPU, the system 
consumes 3  times less energy than when the function is run on the central 
processing unit i7-2600K. For the GTX 480, the power consumption is 5 times 
lower and for the GTX 680 is 10 times lower than for the i7-2600K central 
processing unit.  

 After running the test suite, we have recorded a high level of performance reflected 
by the low execution times and we have obtained an increased level of economic 
efficiency confirmed by the reduced energy consumption of the radix sort 
algorithmic function, run on graphics processors, compared to the sequential 
version run on the central processing unit.  

 When running the radix sort algorithmic function on the graphics processing units 
GTX 280, GTX 480, GTX 680 and on the central processing unit i7-2600K, for a 
number of key-value pairs of the input vector between 35 and 262,144 elements, 
the best execution time was recorded on the central processing unit, then on the 
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GTX 680 GPU, because the amount of data does not generate an enough 
computational load in order to fully use the huge parallel processing capacity of the 
GPUs.  

 We have obtained improved execution times and larger bandwidth when sorting 
large dimension arrays of float data types on the GTX 680 graphics processing unit 
(500,111-60,000,000 elements) than when using the traditional central processing 
unit. We have recorded on the GTX 680 an improvement of up to 19.32x in both 
execution time (54.5883 ms vs 1055.02771 ms) and bandwidth (0.2275 GB/s vs 
4.3965 GB/s) compared to the i7-2600K processor. This time the huge parallel 
processing capacity of the GTX 680 GPU has been fully used since there were 
required much more computations than in the previous cases. Based on these 
results, we have concluded that in order to obtain the best performance of the radix 
sort algorithmic function, it is necessary to use a hybrid solution: a solution that 
sorts data using the CPU if the number of key-value pairs of the input vector ranges 
between 35 and 262,144, and using the GPU if the number of key-value pairs of 
the input vector ranges between 500,111 and 60,000,000.  

 When running the radix sort algorithmic function on the GTX 680 graphic 
processor, using a variable dimension input array (35-60,000,000 elements) of 
integer, unsigned integer or float input data-types, the performance is comparable. 
When the keys are of double, long long or unsigned long long data types, the 
performance is comparable but the execution times are up to 2.58x higher (54.5883 
ms vs 140.848443 ms) then in the cases when the input data are of integer, unsigned 
integer or float data type. Regarding the memory bandwidth, the performance is 
comparable in all the six analysed cases. These results reflect a high level of 
performance for our parallel radix sort algorithmic function, regardless of the 
processed data types and confirm the efficiency of our optimization solutions used 
in developing the function.  

In order to harness the huge computational power of the CUDA architecture, we have 
designed the parallel radix sort algorithmic function so that it dynamically configures the 
optimal parameters for each of the used graphics cards. The obtained experimental results 
reflect a high level of performance on all the three GPUs (whether they were launched in 
2008, 2010 or 2012), exceeding the performance obtained on the last generation Sandy 
Bridge i7-2600K CPU, even if we had overclocked it at 4.6 GHz.  

The experimental results confirm the tremendous capacity of scalability and self-
adjustability of our parallel radix sort algorithmic function implemented in CUDA, 
designed to employ the full potential of the GPUs’ architectures. The solutions for 
optimizing the radix sort algorithmic function using the Compute Unified Device 
Architecture prove their efficiency when the function runs on GPUs from different 
generations and thus the function is useful and applicable in different scenarios and 
situations, in a variety of data processing applications that require the parallel radix sort 
algorithm. 
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