
DESIGNING HTML HELPERS TO OPTIMIZE WEB APPLICATION 
DEVELOPMENT 

 
Dragos-Paul Pop1 

 
Abstract 
 
Building a web application or a website can become difficult, just because so many 
technologies are involved. Generally companies tend to people that work in teams to 
develop web applications. These teams are made up of professionals that focus on 
different technologies, such as CGI, HTML, JavaScript, CSS and databases. When the 
work of many people gathers to make up a single document there is often a mismatch 
between parts of code written by different team members. This article focuses on 
improving this matter by bringing consistency in code through the use of HTML helpers 
in server-side scripting languages. The examples in this article use PHP as the server-
side language, but the model can be applied in any other language a developer works 
with. 
 
Keywords: HTML, CGI, Helper, OOP, code generation 
 
JEL Classification: L86 
 
Introduction 
 
From its invention around 20 years ago, the World Wide Web has known one of the 
highest ascensions of all computer technologies. Most jobs put on the market by 
companies are web development related and most IT students tend to go the “web way”. 
We must admit that web development has somewhat of a bigger attraction than other IT 
technologies, mainly because it is easier to learn and lets people be more creative. Little 
effort is required to create a web page and most students are attracted by this fact. But 
there is a catch. Web development includes quite a lot of technologies and although 
getting started is easy, the learning curve gets steeper once people need to develop more 
complex websites or applications. 
 
When speaking of “the web” we include a lot of technologies.  Web applications follow a 
client-server model and the World Wide Web is not a proprietary system. Actually, the 
system is just a way of interlinking hypertext documents and accessing them via the 
Internet. Several protocols have been design to accomplish this and there is a governing 
body that develops standards for the web. This body is known as the World Wide Web 
Consortium (or W3C) and is not a company, but a standards organization. This means that 
its goal is not profit. The W3C is made up of 317 organizations and includes all the great 
IT companies and corporations, like Microsoft, Apple, Mozilla, Yahoo, Google, IBM, HP 
and so on. The W3C is responsible of many web standards, like (X)HTML, CSS, XML 
and so on. 
 
                                                             
1 Ph.D. Student at the Academy of Economic Studies and Teaching Assistant at the Romanian-American 
University, Bucharest, Romania; email: dragos_paul_pop@yahoo.com 



 
 

I mentioned earlier that the web follows a client-server model. The W3C is responsible 
for the most important standards that technologies running on the client side should 
follow, like HTML, CSS, XML and the DOM, to name some of the most important. 
There are other client side technologies that are not governed by W3C like JavaScript, 
Flash and Silverlight. JavaScript follows the ECMA Script standard ruled by Ecma 
International. Flash is developed by Adobe and Silverlight by Microsoft. 
 
All the client side technologies are used to build hypertext documents that are interpreted 
by a web browser and presented to the end user. This is also an application that runs on 
the client machine. Browsers are diverse and are built by various companies and 
organizations. Microsoft makes the infamous Internet Explorer. Mozilla makes Firefox. 
Apple builds Safari and Google develops Chrome. We also have Opera, Konqueror and 
many more others.  These are the most popular browsers people use on the Internet today. 
 
There is also a server side to the web application model. This is where the documents and 
all the information are stored. There are a lot of technologies for the server side too. These 
are used to store, access, fetch and build all the documents and information needed by the 
client. The application that handles document storage, retrieval and access is the server 
software. There are many server applications used today, but two of them stand out as the 
most used: the Apache Web server and Microsoft’s Internet Information Services. On top 
of file management functions, these applications allow running scripts. This is where the 
CGI technology comes in. It is used to make websites and web applications more 
dynamic. It actually gives a developer a way to build hypertext documents on the fly, 
based on what information the user requested. These technologies allow data to be stored 
in databases. Scripting technologies include PHP, ASP, Java, Perl, Python, Ruby, Cold 
Fusion and a lot more. 
 
The problem 
 
Most hypertext documents residing on the server are dynamic. That means they will 
actually go through a CGI application on the server before being fed to the client. This 
allows for programming logic to be inserted in these documents. Often times, these 
documents, or scripts, tend to contain a mix of different types of code: HTML, CSS, 
JavaScript and CGI. CSS and JavaScript code can be taken out of the main document and 
put into different files, but server-side scripting code cannot. This leaves developers with 
files that contain two types of code.  
 
CGI languages give an option to require and include code from other files. This gives a 
way of separating logic from content even further. Still, a lot of the static HTML code 
needs to be generated by CGI, like tables, forms, lists and so on. This becomes a burden 
on the CGI developer, because he needs to focus on two technologies and have two types 
of code in his files. It also becomes a burden for the client side developer, because he 
needs to work with HTML code generated by the CGI developer. Many times table, form, 
list and other markup generated by the CGI programmer tends to be inconsistent across 
pages. 
 



A typical portion of a server-side scripting file looks like the code snippet below. It 
generates a list of items that are used as a navigation menu. 
 
<ul style="border: thin slid black"> 
<?php  if(isset($_SESSION['user'])) echo "<li><a 
href='logout.php'>LOGOUT</a></li>";  ?> 
<?php  if(isset($_SESSION['user'])) echo "<li><a 
href='cont.php'>MY ACCOUNT</a></li>";  
else echo "<li><a href='login.php'>LOGIN</a></li>"; ?> 
<li><a href="cart.php" onclick=”goto(‘wherever’); return 
false;”>BASKET</a></li>  
<li><a href="contact.php">CONTACT</a></li>  
<li><a href="galerie.php">GALLERY</a></li> 
<li><a href="faq.php">FAQ</a></li> 
<li><a href="despre.php">ABOUT</a></li> 
</ul> 
 
We can see that HTML, PHP, JavaScript and CSS code is intertwined. This style of 
programming gives headaches. 
 
The solution 
 
A way of solving the above problem is to build special pieces of code (mainly classes, for 
CGI languages that allow an object oriented programming style) that will be used to 
generate markup code. This way, the markup is no longer a burden on either the server-
side developer or the client-side developer. 
 
On the client side, JavaScript provides a way of doing just this by using special methods 
and interacting with the DOM (document object model). This means that developers can 
use JavaScript to build and insert or modify HTML elements. It is as easy as calling the 
createElement function and passing it the type of HTML element to be built. The function 
returns a reference to a newly built object and then properties of it can be modified. The 
newly created element can then be inserted anywhere in the document. Similarly an 
existing element can be fetched and modified. 
 
Server-side scripting languages don’t usually have functions that provide this 
functionality. But it can be built by the developer. 
 
The HTMLElement class 
 
The proposed model borrows heavily from JavaScript to help the developer build HTML 
elements and work with them. It is provides methods for creating elements, adding, 
removing and changing attributes, inner code and child nodes. Basically it is a DOM 
manipulation class. 
 
The listing of the class follows bellow with a detailed explanation of each method 
defined. 
 
class HtmlElement { 



 
 

  
The class properties or attributes are:  

• the element itself (this is a string and represents the name of the HTML tag; egg.: 
a, p, div, form, table etc.) 

• a collection of attributes for the element (this is an array with key-value pairs 
representing the attribute name and attribute value; egg.: id-element1, class-error 
etc.) 

• the inner HTML value of the element that is found between the opening and 
closing tags of the element; this could be plain text or HTML 

• a collection of children of the current element; this is an array of other instances 
of this class 

• the parent of the current element; represents an instance of the same class; crucial 
for DOM manipulation purposes 

• finally the HTML code representation of the element, its attributes and children 
 

public $element = ""; 
 private $attributes = array(); 
 public $innerHTML = ""; 
 public $children = array(); 
 public $parent = NULL; 
 private $code = ""; 
 
The __construct function is the class constructor and takes none or one or two arguments: 
the element (the tag) and an array of initial attributes. 
 
 public function __construct($element="", $attributes = NULL) { 
  if(!empty($element)) 
   $this->element = $element; 
  if(!empty($attributes)) 
   $this->attributes = $attributes; 
   
 } 
 
The four functions bellow are part of PHP’s magic methods. These are used to create and 
manage dynamic properties for a class instance. There are getters and setter for dynamic 
properties, as well as a destroyer and a checker. All of them work with the attributes 
property of the class, adding, fetching, checking or destroying certain key-value pairs.  
 
 public function __get($attribute) { 
  if (array_key_exists($attribute, $this->attributes))  
            return $this->attributes[$attribute]; 
 } 
 
 public function __set($attribute, $value) { 
  $this->attributes[$attribute] = $value; 
 } 
  
 public function __unset($attribute) { 
  if (array_key_exists($attribute, $this->attributes)) 
   unset($this->attributes[$attribute]); 



 } 
  
 public function __isset($attribute) { 
  return array_key_exists($attribute, $this->attributes); 
 } 
  
A usage example for the above methods is as follows: 
 
 //creating a new instance of the class 
 $paragraph = new HTMLElement();  

//setting a known property 
  $paragraph->element = "p"; 
 //dynamically adding a first property  
 $paragraph->id = "first_paragraph";  

//dynamically adding a second property 
 $paragraph->align = "left";  
 
The next method creates the HTML code representation of the object. Basically it creates 
the code property. It begins with the opening tag, adds the attributes and, if the element 
has a closing tag, adds the children code and the closing tag.  
 
 private function make_code() { 
  if($this!=NULL) { 
   $code ="<"; 
   $code .= $this->element;  
   $code .= $this->add_attributes_code(); 
   if($this->end_tag()) { 
    $code .= ">";//\n"; 
    $code .= $this->innerHTML; 
    $code .= $this->add_children_code(); 
    $code .= "</"; 
    $code .= $this->element; 
    $code .= ">";//\n"; 
   } 
   else 
    $code .= " />";//\n"; 
   $this->code = full_trim($code); 
  } 
  else 
   $this->code = ''; 
 } 
 
The add_child method receives an instance of this class and adds it as a child to the 
current element, by appending it at the back of the children array. Also, the child element 
gets its parent set to the current element to provide DOM accessibility.  
  
 public function add_child($child) { 
  if ($child instanceof HtmlElement) { 
   $this->children[] = $child; 
   $child->parent = $this; 
  } 
 } 



 
 

  
For better DOM manipulation there are two more methods for adding children. The 
add_child_after, that adds an instance of the class after a certain child that has the id 
property provided as the first argument, and prepend_child that does what the name 
suggests. 
 
 public function add_child_after($neighbour_id, $child) { 
  if($child instanceof HtmlElement) { 
   foreach ($this->children as $key=>$kid) { 
    if($kid->id == $neighbour_id) { 
     array_splice( 
$this->children, $key, 1, array($kid, $child) 
); 
    } 
   } 
  } 
 } 
  
 public function prepend_child($child) { 
  if ($child instanceof HtmlElement) { 
   array_unshift($this->children,$child); 
  } 
 } 
  
The following function generates a string that represents the attributes of the current 
element and their values. 
 
 private function add_attributes_code() { 
  $code = ""; 
  if(!empty($this->attributes)) 
   foreach ($this->attributes as $attr=>$val) 
    $code .= ' '.trim($attr).'="'.trim($val).'" '; 
  return $code; 
 } 
  
An important method is found just below. It provides a way of generating the HTML 
representation of the children of the current element. It actually calls each child’s own 
make_code method and appends the string to the return value.  
 
 private function add_children_code() { 
  $code = ""; 
  foreach($this->children as $child) { 
   $code .= $child->code(); 
  } 
  return $code; 
 } 
 
The code method provides a more accessible and friendly way of accessing the element’s 
code attribute. 
 
 public function code() { 



  $this->make_code(); 
  return full_trim($this->code); 
   
 } 
  
The next method return true or false depending on whether the element has an ending tag 
or not. It just uses a switch statement based on W3C HTML standard tags. 
  
 private function end_tag() { 
  switch ($this->element) { 
   case "img" : 
   case "input" : 
   case "area" : 
   case "base" : 
   case "br" : 
   case "col" : 
   case "frame" : 
   case "hr" : 
   case "link" : 
   case "meta" : 
   case "param" : 
    return false;  
  } 
  return true; 
 } 
 
The last methods are DOM accessing methods. They are used to get references  to certain 
children of the current elements. The developer can search for a child by its ID or by a 
certain property-value pair. References to multiple children can also be returned by 
searching for a certain tag or common property-value pairs. 
 
 public function get_child_by_id($id) { 
  if($this->id == $id) 
   return $this; 
  foreach ($this->children as $child)     
   if($el = $child->get_child_by_id($id))  
    return $el;  
  return false;    
 } 
  
 public function get_children_by_property($prop, $val) { 
  $res = array();   
  if($this->$prop == $val) { 
   return $this;       
  } 
  foreach ($this->children as $child) { 
   $el = $child->get_children_by_property($prop, $val); 
   if(is_object($el)) 
    array_push($res,$el); 
   elseif(!empty($el)) 
    foreach($el as $e) 
     array_push($res,$e); 



 
 

  } 
  return $res; 
 } 
  
 public function get_child_by_property($prop, $val) {   
  $kids = HtmlElement::get_children_by_property($prop, $val);  
  if($n = count($kids)) 
   return $kids[$n-1]; 
  else 
   return NULL; 
 } 
  
 public function get_children_by_tag_name($tag) { 
  $res = array();   
  if($this->element == $tag) { 
   return $this;       
  } 
  foreach ($this->children as $child) { 
   $el = $child->get_children_by_tag_name($tag); 
   if(is_object($el)) 
    array_push($res,$el); 
   elseif(!empty($el)) 
    foreach($el as $e) 
     array_push($res,$e); 
  } 
  return $res; 
 } 
} 
 
Basic usage of the class is given in the examples bellow. A new HTML Form element is 
created and attributes are set. Then several other elements are created and used to 
populate the form. 
 
$form = new Form(); 
$form->enctype="multipart/form-data"; 
$form->class = "edit_avatar"; 
$form->method = "post"; 
$form->action = "cont/edit/avatar"; 
$fieldset = new HtmlElement("fieldset"); 
$legend = new HtmlElement("legend"); 
$legend->innerHTML = "Change avatar: "; 
$fieldset->add_child($legend);   
$avatar = new HtmlElement("input", array("type"=>"file", 
"name"=>"avatar", "id"=>"avatar")); 
$label = new HtmlElement("label", array("for"=>"avatar")); 
$label->innerHTML = "Avatar: "; 
$desc = new HtmlElement("span", array("class" => "description", 
"id" => "avatar_desc")); 
$desc->innerHTML = "The file must be jpeg or gif with a size of 
maximum 100 KB"; 
$div = new HtmlElement("div", array("class"=>"fieldline")); 



$hidden = new HtmlElement("input", array("type"=>"hidden", 
"name"=>"MAX_FILE_SIZE", "value"=>"300000")); 
$div->add_child($hidden); 
$div->add_child($label); 
$div->add_child($avatar); 
$div->add_child($desc); 
$fieldset->add_child($div); 
$submit = new HtmlElement("input", 
array("type"=>"submit","value"=>"Change")); 
$div = new HtmlElement("div", array("class"=>"submit fieldline")); 
$div->add_child($submit); 
$fieldset->add_child($div); 
$form->add_child($fieldset); 
 
After the developer runs the code method on the newly created element he gets the 
following HTML string: 
 
<form enctype="multipart/form-data" class="edit_avatar" 
method="post" action="cont/edit/avatar" > 

<fieldset> 
<legend>Change avatar: </legend> 
<div class="fieldline" > 

<input type="hidden" name="MAX_FILE_SIZE" value="300000" /> 
<label for="avatar" >Avatar: </label> 
<input type="file" name="avatar" id="avatar" /> 
<span class="description" id="avatar_desc" > 
The file must be jpeg or gif with a size of maximum 100 KB  
</span> 

</div> 
<div class="submit fieldline" > 

<input type="submit" value="Change" /> 
</div> 

</fieldset> 
</form> 
 
Conclusion 
 
Length of code might not be the biggest gain at first sight (although it will be after 
extending the class to create specialized Form and Table classes, as discussed in future 
articles), but DOM like manipulation is. The model also provides a way of taking HTML 
code out of scripting files for a more consistent look and feel of the code.  
 
Acknowledgement 
 
This work was co-financed from the European Social Fund through Sectorial Operational 
Program Human Resources Development 2007-2013, project number 
POSDRU/107/1.5/S/77213 „Ph.D. for a career in interdisciplinary economic research at 
the European standards” 
 
Bibliography 



 
 

 
1. “Zend Framework in Action”, Rob Allen, Nick Lo, Steven Brown; Manning 

Publications; 1 edition (January 4, 2009),  ISBN-13: 978-1933988320 
2. “Zend Framework 1.8 Web Application Development”, Keith Pope; Packt 

Publishing (October 26, 2009), ISBN-13: 978-1847194220 
3. “PHP Object-Oriented Solutions”, David Powers; friendsofED; 1 edition 

(August 21, 2008), ISBN-13: 978-1430210115 
4. “Beginning ASP.NET 4: in C# and VB (Wrox Programmer to Programmer)”, 

Imar Spaanjaars; Wrox; 1 edition (March 22, 2010), ISBN-13: 978-0470502211 
5. “Pro ASP.NET 4 in C# 2010”, Matthew MacDonald, Adam Freeman; Apress; 4 

edition (June 30, 2010), ISBN-13: 978-1430225294 
6. “Professional ASP.NET MVC 3 (Wrox Programmer to Programmer)”, Jon 

Galloway, Phil Haack, Brad Wilson, K. Scott Allen; Wrox; 1 edition (August 9, 
2011), ISBN-13: 978-1118076583 


	JEL Classification: L86

