
JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT, VOL.5.2.1–SPECIAL ISSUE

SOLUTIONS FOR OPTIMIZING THE DATA PARALLEL PREFIX SUM
ALGORITHM USING THE COMPUTE UNIFIED DEVICE ARCHITECTURE

Ion Lungu1

Dana-Mihaela Petroşanu2
Alexandru Pîrjan3

Abstract

In this paper, we analyze solutions for optimizing the data parallel prefix sum function using
the Compute Unified Device Architecture (CUDA) that provides a viable solution for
accelerating a broad class of applications. The parallel prefix sum function is an essential
building block for many data mining algorithms, and therefore its optimization facilitates the
whole data mining process. Finally, we benchmark and evaluate the performance of the
optimized parallel prefix sum building block in CUDA.

Keywords: CUDA, threads, GPGPU, parallel prefix sum, parallel processing, task
synchronization, warp.

1. Introduction

The latest generations of GPU (Graphics Processing Units) architectures are much easier to
program than traditional GPUs and offer a significant increase in both memory bandwidth and
computational power; so many software developers have focused their attention lately on
General Purpose Computation Graphics Processing Units (GPGPU). A GPGPU is particularly
useful in many scientific fields (medical data analysis, neuroscience, telecommunication
control, data extraction, financial data prediction) due to the huge computational power that
goes far beyond than that of a CPU (Central Processing Unit). Graphics processing units
combine hundreds of simplified parallel processing cores so the necessary time for data
extraction is considerably reduced and this is very useful when performing operations on
massive data workloads. This high computational power that overcomes the most powerful
CPUs, offers a huge benefit for numerous scientific fields like image processing, geometric
processing and database operations. Another essential aspect when comparing a GPGPU to a
classical central processing unit is the performance per watt consumed. General-purpose
computation graphics processing units prove to be powerful instruments, with high
performance, low cost and an increasing number of features offered, capable of solving an
increasingly wide range of applications [1].

For a long time, GPU processors have been used to accelerate graphics rendering on
computers. Following the increasing need for improved three-dimensional rendering at a high
resolution and a large number of frames per second, the GPU has evolved through a
specialized architecture, from one-purpose components to multiple purposes complex

1 PhD Professor, Economic Informatics Department, Academy of Economic Studies, e-mail: ion.lungu@ie.ase.ro
2 PhD, Department of Mathematics-Informatics I, University Politehnica of Bucharest,
e-mail: danap@mathem.pub.ro
3 Assistant Lecturer, PhD Candidate, School of Computer Science for Business Management, Romanian-American
University, e-mail: alex@pirjan.com

Solutions For Optimizing The Data Parallel Prefix Sum Algorithm Using The Compute Unified Device
Architecture

architectures, able to do much more than just provide video rendering. This development
allowed the acceleration of a broad class of applications.

CUDA is a software and hardware architecture that allows the NVIDIA graphics processor to
execute programs written in C, C++, FORTRAN, OpenCL, Direct Compute and other
languages. A CUDA program calls parallel program kernels. A kernel executes in parallel a
set of parallel threads. The programmer or compiler organizes these threads into thread blocks
and grids of thread blocks. The GPU processor instantiates a kernel program on a grid
containing parallel thread blocks. Each thread from the block executes an instance of the
kernel and has an unique ID associated to registers, to thread’s private memory from the
thread block [2].

The CUDA programming environment provides three levels of abstraction [2]: a hierarchy of
thread groups, shared memories and barrier synchronization. These abstractions, available for
the developer as a minimal set of extensions in the C language, provide fine-grained
parallelism for data and threads, associated with large grained parallelism for data and tasks.
Using these abstractions, the developer partitions the problem into sub-problems of small
sizes that can be solved in parallel. Such an approach allows threads to cooperate when
solving each sub-problem and also provides scalability since each sub-problem can be solved
by any of the available processing cores. Consequently, a CUDA C compiled program can be
executed on any number of processing cores.

The Compute Unified Device Architecture hierarchy of threads is mapped to the hierarchy of
the graphics processing units hardware processor; a GPU executes one or more kernel grids; a
streaming multiprocessor (SM) executes one or more thread blocks; the CUDA cores
contained in the SM run the threads within blocks. The streaming multiprocessor can perform
up to 32 groups of threads called warps. Regarding memory hierarchy, each multiprocessor
contains a set of 32-bit registry with a zone of shared memory, which is easily accessible for
each core of the multiprocessor but hidden from other multi-processors. Depending on the
generation of a GPU, the number of registry and the size of shared memory vary. Besides
shared memory, a multiprocessor contains two read-only memory cache, one for texture and
another one for constants.

With the introduction of CUDA-C language, application developers are able to harness, using
a standard programming language, the huge parallel processing power offered by the latest
generation of graphics processing units. CUDA enables developers to specify how tasks are
decomposed in order to be processed by many parallel threads and how are these tasks
executed by the GPU [3]. The high level of control offered by the CUDA-C language
facilitates the development of high-performance basic functions useful for optimizing a wide
range of computational tasks that require high processing power. Thus, CUDA-C is a viable
solution for developing essential building blocks for many data mining algorithms and among
them, the parallel prefix sum function.

The parallel prefix sum function offers to the developers the possibility of implementing
various efficient algorithms for extracting and processing data so the programmer does not
have to know in detail how resources are allocated in the architecture or to spend extra time in
optimizing the parallel prefix sum function that is used in the algorithms’ construction. The

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT, VOL.5.2.1–SPECIAL ISSUE

parallel prefix sum function automatically allocates resources, by optimally taking into
account the available hardware specifications. Therefore, the developer does not have to
specify (but he has the possibility to do so) further restrictions or details regarding the
division of tasks among multiple threads or their allocations to the processing cores, since the
data parallel prefix sum function automatically specifies all these aspects.

By analyzing various implementations of data mining algorithms, we have noticed the
possibility of improving their performance by optimizing the parallel prefix sum function that
is a common functional building block in all of them. The function is developed to provide
improved performance over other implementations. Another basic criterion for building this
function is the modularity, so that the function can be easily included in other applications.
The implementation of the parallel prefix sum function offers a series of advantages for the
developers because, on one hand it provides a useful optimized tool in the data mining
process and on the other hand, it offers significant economic advantages, much better than the
CPU or even the GPU implementations.

Graphic Processing Units (GPU) are based on multiple processing cores and comprise
thousands of parallel threads, allowing the parallel processing of data streams. The same
program processes all data and the GPU uses the Single Instruction, Multiple Threads (SIMT)
processing model. Thus, each processing core sequentially executes a thread and all the cores
within the same group execute the same instruction in the same time. Instructions are
processed in groups of 32 threads, called warps. The parallelism involved through the SIMT
model is different from the task parallelism and the instruction-level parallelism. The usage of
this type of parallelism in data processing algorithms offers optimal performance when
algorithms are being designed to use the parallel processing capability of the architecture and
relies on a good knowledge of the algorithm’s complexity and on the implemented level of
parallelism.

In this context, the data mining and its parallel processing improves by using essential
building blocks for data mining algorithms (and among them, the parallel prefix sum)
designed so as to provide optimum performance and efficiency, based on graphic processing
units with multiple cores. One of the function’s main advantages is the ability to reuse the
source code in developing a wide range of algorithms for extracting and processing data. The
ability to reuse the source code has a wide range of applications, allowing the possibility to
optimize the data mining process as a whole, not just a specific application.

2. The data parallel prefix sum function

The prefix sum is an algorithmic function used in sorting routines, sequence compaction,
radix sort, quicksort, sparse-matrix vector multiplication, minimum spanning tree
construction, in graph theory and in many parallel algorithms [4].
Given an associative binary operator ⨂ with identity 𝑒 and an input 𝑛-dimensional sequence
𝑣 = [𝑎0,𝑎1, … ,𝑎𝑛−1], a prefix sum operation produces an output 𝑛-dimensional sequence 𝑤𝑒,
where
 𝑤𝑒 = [𝑒,𝑎0, (𝑎0⨂𝑎1), (𝑎0⨂𝑎1⨂𝑎2), … , (𝑎0⨂𝑎1⨂…⨂𝑎𝑛−2)] (1)

Solutions For Optimizing The Data Parallel Prefix Sum Algorithm Using The Compute Unified Device
Architecture

In the serial implementation of the prefix sum function, a single thread that uses a central
processing unit (CPU) performs the computations. All the elements of the input vector are
processed in an ascending order and the current element of the output vector is computed as
the sum of the previous element of the output vector and the previous element of the input
vector.

In the following, we present an efficient method for designing and implementing the parallel
prefix sum function in the CUDA architecture. We have designed the function using a "divide
and conquer" approach, based on a set of prefix sum functions built within the warps (groups
of 32 threads). This approach results in an optimized, efficient function and this avoids
multiple data requests from the same memory banks and, thus, the possibility of memory
banks conflicts. The CUDA programming model, based on a hierarchy of threads, of thread
blocks and grids of thread blocks [5], determines a hierarchical structure of the parallel prefix
sum function. Within the algorithmic parallel prefix sum function, sequential computations
are processed within each thread; results are parallel processed within each thread block and
also between different blocks. In order to design an optimized prefix sum function, we have
taken into account the parallel processing that takes place within each thread block and
between different blocks, using shared memory management optimization techniques of the
graphics processor as to avoid memory bank conflicts. In order to reach the maximum
efficiency we have developed the parallel prefix sum function so that it fits the way how tasks
are scheduled within the CUDA architecture. Within a warp, the parallel prefix sum function
processes the instructions and then, the results are being processed using instructions at the
thread blocks’ level. Finally, the results obtained at the grids of thread blocks level are
combined and thus it is obtained a global sum.

First we define a parallel prefix sum function within a warp consisting of 32 threads. (Figure
1).

Figure 1. The parallel prefix sum function within a warp

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT, VOL.5.2.1–SPECIAL ISSUE

In order to obtain an optimized implementation of the function, one must take into account [4]
that threads within a warp are executed synchronously, eliminating the necessity of
synchronization. Since a warp has 32 threads, it is not necessary to implement a "for" loop
when browsing it.
The parallel prefix sum algorithmic function within the thread block uses the prefix sum
function within a warp to process in parallel all warps sums. Each of the warps obtains a
partial result and the last partial result of each warp is stored. A certain warp applies the warp
level function “SumareWarp” on the previously stored results. Each of the warp’s threads
stores the partial results and then the final results are obtained as in Figure 2. The above
described block level parallel prefix sum function has taken into account that the binary
operator is associative.

Figure 2. The parallel prefix sum function within a thread block

We present next a parallel prefix sum function at the global level, for sequences of arbitrary
length. This function uses the above mentioned block level function “SumareBloc”, that
performs a fixed size sum, corresponding to the thread block’s size. The partial result for each
of the thread blocks is stored in the array “rezultate_bloc[]”. The parallel prefix sum function
is applied to this storage array and each thread of the block stores the previous result, thus
obtaining the final result.

3. The experimental results and the performance analysis
for the parallel prefix sum function

In this section we analyze the performance of the above described parallel prefix sum
function, using the following configuration: Intel i7-2600K operating at 3.4 GHz with 8 GB
(2x4GB) of 1333 MHz, DDR3 dual channel. Programming and access to the GPUs used the
CUDA toolkit 4.0, with the NVIDIA driver version 270.81. In addition, all processes related
to graphical user interface have been disabled to reduce the external traffic to the GPU. The
NVIDIA graphic cards used were the GeForce GTX 280 and the GTX480 (from the Fermi
architecture). In [1] there are described the main features of these graphic cards.

Solutions For Optimizing The Data Parallel Prefix Sum Algorithm Using The Compute Unified Device
Architecture

Measurements do not include the necessary time for data transfers between the central
processing unit and the graphic processing unit, as the parallel prefix sum is designed to be
used as a building block for a large number of applications running on GPUs, so the transfer
times will vary depending on the complexity of the specific application.
In order to compute the average execution time that the GPU spends for executing the parallel
prefix sum function, we used the CUDA event application programming interface (API). We
have preferred this option instead of those based on the CPU’s or the operating system’s
timers, because those methods would have included latency and variations from different
sources. In addition, we can asynchronously perform computations on the host while the GPU
kernel runs and the only way to measure the necessary time for the host computations is to
use the CPU or the operating system timing mechanism.

A GPU time stamp recorded at a user specified moment in time represents an event in CUDA.
Because the time stamp is recorded directly by the GPU, we do not encounter the problems
that could have appeared if we had tried to time the GPU execution using CPU timers. In
order to time correctly the execution of the function, we create both a start and a stop event.
Some of the kernel calls we make in CUDA C are asynchronous, the GPU begins to execute
the code but the CPU continues the execution of the next code line before the GPU has
finished. In order to safely read the value of the stop event we instruct the CPU to
synchronize on the event using the API function “cudaEventSynchronize()”, as depicted in

Figure 3.

Figure 3. Measuring the execution time using CUDA events

In this way we instruct the runtime to block further instructions until the GPU has reached the
stop event so when calling the “cudaEventSynchronize()” we are sure that all the GPU work
prior to the stop event has been completed and it is safe to read the recorded time stamp. In
this way, we get a reliable measurement of the execution time for computing the above
described parallel prefix sum function [2].

The first set of tests evaluates the execution times obtained applying the parallel prefix sum
function on vectors of various sizes and elements of float type. The vectors were randomly
generated, as to cover a wide range of values. In Table 1 we present the results of the
experimental runs of the parallel prefix sum function over the CPU and the two GPUs

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT, VOL.5.2.1–SPECIAL ISSUE

mentioned above. The results represent the average of 10,000 iterations, and the the unit of
measure is milliseconds (ms).

Test
No.

Number
of
elements

Execution
time on
CPU (ms)

Execution time on GPU
(ms)
GeForce
GTX280

GeForce
GTX480

1 35 0.004226 0.081268 0.039465
2 128 0.000604 0.076837 0.03618
3 256 0.001509 0.081471 0.039502
4 260 0.001207 0.0786 0.036823
5 512 0.002113 0.081163 0.036878
6 1000 0.003924 0.07973 0.040742
7 1024 0.003622 0.078468 0.035371
8 1030 0.004226 0.239555 0.095693
9 32768 0.108366 0.249818 0.107071
10 45555 0.149117 0.251118 0.105261
11 65536 0.21462 0.24536 0.100109
12 131072 0.428636 0.274529 0.118679
13 262144 0.85516 0.285939 0.140495
14 500111 1.623384 0.339683 0.168711
15 524288 1.708206 0.349859 0.168474
16 1048555 3.439655 0.444213 0.227186
17 1048576 3.44207 0.42808 0.224189
18 1048581 3.45022 0.597514 0.285429
19 2097152 6.890177 0.791959 0.398717
20 2097999 6.860897 0.827059 0.39679
21 4194334 13.701268 1.127283 0.626898
22 8388600 27.653078 1.814563 1.076924

Table 1. Experimental results for the parallel prefix sum function

Solutions For Optimizing The Data Parallel Prefix Sum Algorithm Using The Compute Unified Device
Architecture

Figure 4. The parallel prefix sum function: 35-1030 elements of the input array

In Figure 4 we present the obtained experimental results by running the parallel prefix sum
function when the input array has a relatively low dimension (35-1030 elements). In this case
we have noticed that the central processing unit has the best execution time, because it has not
been generated an enough volume of computations in order to use the huge parallel
processing capacity of the GPU.

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT, VOL.5.2.1–SPECIAL ISSUE

Figure 5. The parallel prefix sum function: 1030-8388600 elements of the input array
In Figure 5 there are presented the obtained experimental results when running the parallel
prefix sum function on a large dimension input array (1030-8388600 elements). In this case
we have noticed that the best execution time is obtained by the GTX480 graphic card,
because this time it has been created a sufficient computational load to fully employ the huge
parallel processing capacity of the GPU. The CUDA implementation offers a high degree of
performance whether the vector’s dimension is a power of two or it is not.

The next set of tests evaluates the influence of data types on the performance of the above
described parallel prefix sum function. The function has been designed to allow the selection
of the input array components, which can be from one of the types: integer, unsigned integer,
float, double, long long or unsigned long long. In Figure 6 there are presented the obtained
experimental results when running the parallel prefix sum function on an input array of
variable dimension (35-8388600 elements). The results represent the average of 10,000
iterations. One can observe that the performance is comparable when the input data is integer,
unsigned integer or float type, the execution time ranging between 0.033475 ms and 1.076924
ms. In the case when the input data is double, long long or unsigned long long type, the
performance is comparable but the execution times are generally higher than in the three
previous cases, ranging from 0.036127 ms and 2.142949 ms. This is justified taking into
account the amount of memory necessary to store the analyzed data types.

Figure 6. The influence of data types on the performance of the parallel prefix sum function

We analyze next the influence of the associative binary operator used when defining the
parallel prefix sum function through equation (1), on the performance of the function. This
function has been designed to allow the selection of the binary operator that can be one of the
following: summation, maximum, minimum or multiplication.

Solutions For Optimizing The Data Parallel Prefix Sum Algorithm Using The Compute Unified Device
Architecture

Figure 7. The influence of the associative binary operator on the performance of the parallel
prefix sum function

In Figure 7 there are presented the experimental results when running the parallel prefix sum
function on an input array of variable dimension (35-8388600 elements). We have chosen
float type elements for the input array. The results represent the average of 10,000 iterations.
One can observe that the performance is comparable in all four cases of binary operators, the
execution times ranging between 0.034305 ms and 1.090579 ms. Our experimental results
confirm the function’s efficiency, which offers optimum results in different situations and
thus it can be implemented in a wide range of algorithms, without being influenced by the
chosen binary operator.

•
4. Solutions for optimizing the performance of the parallel prefix sum function in CUDA

In the following, we outline a series of factors that influence the performance of the parallel
prefix sum function in CUDA. The most important factor in improving the efficiency of the
above-described function is related to the optimization of the tasks’ assignment to each
thread. Processing a single element per thread does not generate enough computational load
to reduce the memory latency. Each thread has its own private memory and also has private
registers, a program and a thread state counter. Each thread independently processes its source
code. The GPU executes and manages at the hardware level hundreds of concurrent threads,
avoiding the overloading and reducing the memory latency.

The Fermi architecture offers 512 processing CUDA cores; a GTX480 has 480 processing
CUDA cores available for use. In order for the cores to be completely occupied, hundreds of
threads are needed. When a defining the threads in order to improve the software performance
in CUDA, the high latency of global memory is an important technical issue that must be

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT, VOL.5.2.1–SPECIAL ISSUE

taken into account by the developer. CUDA generates and uses thousands of active threads, in
contrast with the CPU designs that use large caches to hide memory latencies [1].

Thus, in the parallel prefix sum function in CUDA we have assigned eight input elements per
thread. This happens when data is loaded from the global memory into the shared memory.
Each thread reads two groups of four elements and then sequentially sums these groups. The
obtained result in each of the four elements group is used as input data in a block-level
function similar to the one described in Figure 2, the difference to the above described
function being that each thread processes two input elements instead of one. When the block
level function execution had finished, the result would have been stored back into the groups
of four elements, that had been sequentially scanned.

Another method of optimization is to reduce the number of used registers. The GPU’s
architecture uses multithreading to reduce the memory latency, but the number of executing
threads that can be simultaneously used is often limited by their registry requirements.
Therefore, an efficient technique for maximizing the available number of threads is to
minimize the number of used registers.

The parallel task synchronization represents real time coordination and is often associated
with communication between threads. Synchronization is usually implemented by setting a
synchronization point in the application from which a task cannot continue until another task
reaches a certain point. The implementation of the parallel prefix sum function within a warp
described in Figure 1 eliminates the necessity of synchronization points, because
communication between threads occur at the warp level. Unlike our implementation, a
number of previous implementations [4] require the existence of synchronization points. The
synchronization is not required for sharing data within the same warp, unlike the case when
the shared data belongs to different warps. In order to process a parallel prefix sum, warps
write their last element in a shared memory array, and then a single warp sums the previously
stored results. Finally, each thread adds the warp’s sum to its partial result.

The reduction of the used parallel steps is another factor that was taken into account for
obtaining a high performance parallel prefix sum function compared with other similar
functions. Although this had the effect of increasing the volume of necessary computations,
the SIMT processing model of warps’ execution facilitated their processing. In [4] there are
described two versions of the parallel prefix sum function, one with a low efficiency
regarding the volume of necessary computations and a second improved one, with a reduced
number of computations.

The parallel prefix sum function has been optimized based on the usage of multiple threads
blocks, which results in a substantial improvement of the running time compared to sequential
CPU implementations. When designing the parallel prefix sum function, both algorithmic and
hardware efficiency have been considered. The memory access patterns has also been
optimized.

The overall performance has been significantly improved by managing shared memory banks
conflicts. The CUDA shared memory is composed of multiple memory banks (memory
modules of equal size) [2]. Accessing consecutive arrays using consecutive threads is a very

Solutions For Optimizing The Data Parallel Prefix Sum Algorithm Using The Compute Unified Device
Architecture

fast process because each memory bank stores 32-bit value (eg, a floating point variable).
Multiple data requests from the same memory bank generate memory banks conflicts.
Multiple requests might originate from the same memory address or multiple addresses can be
associated to the same memory bank. The hardware device serializes memory operations
when a conflict occurs and this causes all threads to wait until all memory requests are
fulfilled. Serialization is avoided if all threads read from the same-shared memory address,
because a broadcast mechanism is automatically triggered, an excellent high-performance
method to deliver data simultaneously to many threads [1].

In the Fermi architecture the streaming multiprocessor schedules threads in groups of 32
parallel threads called warps. The parallel prefix sum function partitions data in warp-sized
fragments and then independently processes these fragments using one warp per each of
them. This kind of solution proves very useful when optimizing security solutions
implemented by the use of the multilayered structural data like the MSDSSA presented in [6].

5. Conclusions

We believe that, in the future, harnessing the huge computational power provided by
GPGPUs will have a significant impact on our everyday lives considering that more and more
citizens need to access remotely resources and most of the countries have Internet access,
with Finland being the first in this matter [7]. Thus, a viable solution for real-time data mining
in the near future is of paramount importance for countries and citizens all over the world.
The massively parallel General Purpose Computation Graphics Processing Unit (GPGPU)
and the Compute Unified Device Architecture provide viable solutions for developing parallel
software that scales efficiently on the multithread processing cores. The developed software
must employ a large amount of fine-grained parallelism in order to use the multithreaded
structure of this architecture. Using the SIMT processing model with specific optimization
techniques for data-parallel problems and solutions based on the shared memory
management, is the key to obtain optimized data parallel prefix sum algorithm useful in the
data mining process as a whole.

In this paper, we have analyzed solutions for optimizing the data parallel prefix sum function
using the Compute Unified Device Architecture (CUDA). We have first depicted the
function’s design within a warp, then at the block level and finally at global level. We have
benchmarked and evaluated the performance of the optimized parallel prefix sum building
block in CUDA. Based on previous works in this field and on experimental results, we have
developed an optimized version of the data parallel prefix sum function in CUDA, we have
identified and implemented a set of solutions to improve their performance, confirmed by the
obtained experimental results. The main factors that contribute to the optimization of the
parallel prefix sum function in CUDA are:

• the optimization of the tasks’ assignment to each thread
• the reduction of the number of used registers
• the management of the parallel task synchronization, reducing the number of

the required synchronization operations in the application programming
interface (API)

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT, VOL.5.2.1–SPECIAL ISSUE

• the reduction of the used parallel steps, according to the amount of data
processed

• the multiple thread blocks usage, which results in a substantial improvement
of the running time compared to sequential CPU implementations

• we have used optimization techniques for the GPU memory management and
software performance improvement of the CUDA applications [1].

• overall performance has been significantly improved by managing shared
memory banks conflicts

• the data partitioning in warp-sized fragments, followed by the independent
processing of these fragments using one warp per each of them.

In conclusion, the obtained experimental results confirm the efficiency of the parallel prefix
sum function, that offers optimum results in different scenarios without being significantly
influenced by the type of input data or the chosen binary operator, and therefore it can be
implemented in a wide range of data parallel algorithms. One particular interest was to
research how well the optimization techniques scale to the latest generation of general-
purpose graphic processors units, like the Fermi architecture implemented in GTX480 and the
previous architecture implemented in GTX280. There has been a lot of interest in the
literature lately for the optimization of the parallel prefix sum function, but none of the works
(to our knowledge) tried to validate if the optimizations techniques can be applied to a GPU
from the Fermi architecture.

References

[1] Pirjan Alexandru, Improving software performance in the Compute Unified Device
Architecture, Informatica Economica Journal, vol. 14, no. 4/December 2010, pp. 30-
47.

[2] Sanders J., Kandrot E., CUDA by Example: An Introduction to General-Purpose
GPU Programming, Addison-Wesley Professional, New Jersey, 2010.

[3] GPU Computing Gems Jade Edition, Wen-mei W. Hwu, Morgan Kaufmann, 2011.
[4] Harris M., Sengupta S., Owens J. D., Parallel Prefix Sum (Scan) with CUDA, in GPU

Gems 3, Pearson Education, Boston, 2007.
[5] Nickolls J., Buck I., Garland M., Skadron K., Scalable parallel programming with

CUDA, Queue, vol. 6, no. 2/ March-April 2008, pp. 40-53.
[6] Tăbușcă Alexandru – „A New Security Solution Implemented By The Use Of The

Multilayered Structural Data Sectors Switching Algorithm (MSDSSA)” „Journal of
Information Systems & Operations Management – Vol.4, No.2 – December 2010”
ISSN 1843-4711, Universitary Publishing House, pages 164-168

[7] Tabușca, Silvia Maria - "The Internet Access as a Fundamental Right". Published in
"Journal of Information Systems and Operations Management" Vol.4 No.2,
Decembrie 2010, ISSN 1843-4711, Universitary Publishing House, pages 206 - 212

Solutions For Optimizing The Data Parallel Prefix Sum Algorithm Using The Compute Unified Device
Architecture

	References

