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Abstract 

In this paper, we depict some of the most widely used data mining algorithms that have an 
overwhelming utility and influence in the research community. A data mining algorithm 
can be regarded as a tool that creates a data mining model. After analyzing a set of data, 
an algorithm searches for specific trends and patterns, then defines the parameters of the 
mining model based on the results of this analysis. The above defined parameters play a 
significant role in identifying and extracting actionable patterns and detailed statistics. 
The most important algorithms within this research refer to topics like clustering, 
classification, association analysis, statistical learning, link mining. In the following, after 
a brief description of each algorithm, we analyze its application potential and research 
issues concerning the optimization of the data mining process. After the presentation of 
the data mining algorithms, we will depict the most important data mining algorithms 
included in Microsoft and Oracle software products, useful suggestions and criteria in 
choosing the most recommended algorithm for solving a mentioned task, advantages 
offered by these software products. 

Keywords: data mining optimization, data mining algorithms, software solutions. 

Introduction 

Data mining consists in techniques and algorithms used for discovering new patterns, 
clusters and for classifying different types of data from large datasets. Data mining can 
also be considered a research area based on computational methods designed and used to 
extract interesting or useful patterns (or knowledge) from real-word datasets. In the last 
couple of decades, the technology for generating and storing data greatly evolved and as a 
consequence the amount of data stored in databases become significant larger. 
Unfortunately, the process of knowledge and pattern discovery developed at a much 
smaller extent and so did the human capability of understanding and processing this huge 
amount of data.   
 
The data mining process represents a viable solution to a variety of tasks such as 
regression, frequent pattern mining, clustering, classification and association discovery. In 
this purpose, there are hundreds of algorithms capable of performing these tasks. Data 
mining analysts, researchers, developers and programmers must be aware by the 
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importance of understanding the way that algorithms work and the possibilities of 
applying them.  
 
A data mining algorithm can be regarded as a tool that creates a data mining model. In 
order to achieve this, after analyzing a set of data, an algorithm first searches for specific 
trends and patterns. The algorithm defines the parameters of the mining model based on 
the results of this analysis. These parameters, applied across the entire data set, play a 
significant role in identifying and extracting actionable patterns and detailed statistics. 
 
The optimization of specific algorithms deeply affects the data mining process and 
therefore developers have implemented a large number of data mining algorithms. 
Obviously, there is no appropriate algorithm for all applications, domains or databases. 
Data mining researchers and users must choose which is the most suitable algorithm for 
solving the problem at hand. Data mining incorporates a broad area of scientific fields’ 
techniques like statistics, machine learning, artificial intelligence, pattern recognition.  
 
In this paper we present a few of the most important data mining algorithms, whose utility 
and influence are overwhelming in the research community. After a brief description of 
each algorithm, we analyze its application potential and research issues concerning the 
optimization of the data mining process. The most important algorithms within this 
research refer to topics like clustering [1], classification [2], association analysis [3], 
statistical learning [4], link mining [5]. 

The k-means algorithm 

This algorithm has been developed by researchers Lloyd [6], Forgey, Friedman, Rubin 
and McQueen. In 1967 James MacQueen used for the first time the term "k-means" but 
the idea was first suggested in 1956 by Hugo Steinhaus. Stuart Lloyd introduced for the 
first time the standard algorithm in 1957 as a technique for pulse-code modulation.  
 
The k-means algorithm iteratively partitions a given dataset (containing n observations) 
into a users’ specified number of clusters (denoted by k) in which each observation 
belongs to the cluster with the nearest mean.  
 
Consider a set  of d-dimensional vectors, where each  and 

The initial cluster representatives consists of  points in  and are 
used in order to initialize the algorithm. This are called centroids. After this stage, the 
algorithm keeps iterating two steps until convergence is reached: 

• Step 1 – Data Assignment. In this step, a partitioning of the data occurs by 
assigning each data point to its closest centroid.  

• Step 2 – Relocation of “means”. For each representative cluster, relocation 
takes place in order to position each such cluster into the center of all data 
points that are assigned to it.  

When no more changes in assignments take place, the algorithm is convergent. Each of 
the iterations needs  comparisons that determine the time complexity of one 
iteration.    
 



   
 

The term “closest” used in Step 1 refers to the Euclidean distance: 

 
 
This function decreases whenever the assignment or the relocation steps changes [5] and 
so convergence is obtained in a finite number of iterations. The convergence occurs to a 
local optimum and is influenced by the initial chosen centroids. In order to overcome this 
inconveniences one performs a local limited search of the converged solution or he can 
run the algorithm multiple times, choosing each time different initial centroids. 
 
Besides this difficulty, the k-means algorithm is prone to several other problems, one of 
them being the cluster model. The whole concept resides on spherical clusters that must 
be separable so that the mean value converges towards the center of the cluster. In order 
for the assignment to the nearest cluster to be correct, clusters must be of similar size. 
This problem can be overcome by subjecting the data to a rescaling process before 
clustering. The developer can also use a different distance measure that is more suitable 
for the dataset. Banerjee A. has shown that if, during the assignment step, distance is 
measured by selecting any member of a very large class of divergences (called Bregman 
divergences) without making other changes, the most important properties of k-means are 
retained (scalability, linear separation boundaries, convergence etc). If an appropriate 
divergence is used, the k-means algorithm is effective for a much larger class of datasets 
[6].  
 
Another approach is to perceive the “means” as probabilistic models and not points in 
In this case, the Step 1 assigns every data point to the most probable model that could 
have generated it. The Step 2 updates the model’s parameters so that they best fit their 
assigned datasets. Dhillon, Guan and Kulis suggested a “kernelization” of k-means in 
order to allow k-means to deal with clusters that are more complex [5]. Even if the 
clusters’ boundaries are still linear in an implicit high-dimensional space, they may 
become non-linear if projected back to the original space.  
 
There is a close connection between kernel k-means and spectral clustering. The  
K-medoid algorithm and the Fuzzy c-means present several similitudes to the k-means, 
but in the K-medoid, centroids must belong to the data set that is clustered while in the 
Fuzzy  
c-means the algorithm computes fuzzy membership functions for each of the clusters.  
 
The k-means algorithm remains the most widely used and appreciated algorithms for 
partitioned clustering despite all of its limitations. The algorithm is scalable, easily 
understandable and can be optimized to process streaming data with little effort. KD-trees 
and triangular inequality have been employed in order to speed up k-means that it could 
process very large datasets. Researches optimized the basic algorithms during the years 
and the k-means gradually increased its effectiveness and relevance in the field of data 
mining. The pseudocode of the algorithm [5] is presented in Fig.1. 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Fig.1. The pseudocode of the k-means algorithm. 

The C4.5 and its successor See5/C5.0 

Classifiers are of paramount importance in the data mining process. The most commonly 
used tools that construct them are the systems classifiers that take as input a collection of 
cases. Each case belongs to one of a small number of classes and is characterized by its 
values for a fixed set of attributes. The system outputs a classifier that can predict with a 
high degree of accuracy, which is the class the case belongs to.  
 
We focus on C4.5 and its successor C5.0. The C4.5 is a descendant of CLS and ID3 [5]. 
C4.5 generates classifiers in the form of decision trees (like CLS and ID3) but it can also 
create classifiers in a rule set form. 
 
The C4.5 first generates an initial tree by applying the divide-and-conquer algorithm, 
having a given set S of cases as an input. The tree is declared a leaf if all the cases in S 
belong to the same class or S is small. The leaf is labeled with the class that appears most 
frequently in S. If this does not happen, a test based on a single attribute is chosen. The 
test may have two or more outcomes and represents the root of the tree with one branch 
for each possible outcome of the test. The given set  of cases is partitioned into subsets 

 according to each case and afterwards the same procedure is applied recursively 
to each subset. The pseudocode of the algorithm is presented in Fig. 2.  

 



   
 

 
Fig.2. The pseudocode of the C4.5 algorithm. 

 
During the last step, many tests can be run in order to obtain the desired outcome. C4.5 
ranks possible tests by using heuristic criteria such as:  

• Information gain – used to minimize the total entropy for the subsets , but it 
proves to be a biased criterion for tests with more possible outcomes. 

• The default gain ratio – is used to divide the information gain mentioned above by 
the test outcomes’ information.  
The attributes (numeric or nominal) determine the format of the test outcomes.  

 
Sorting  on the values of a numeric attribute A and choosing the split between 
successive values that maximizes the criterion above, one can obtain the value of the 
threshold h. Then, for A there are  [7]. If A is an attribute with discrete 
values, each value corresponds to one outcome. The values could be grouped into subsets 
each of them having a single corresponding outcome.  
 
In order to avoid overfitting, the initial tree must be pruned. A pruning algorithm, based 
on the estimation of an error rate, is used. This error rate is associated with a set of N 
cases (chosen so that it does not belong to the most frequent class). This method will 
provide a pessimistic estimate of the error rate. The C4.5 algorithm does not perform 
calculation of  but instead of it determines first the binomial probability that a number 

of E events to be observed in N trials and second the upper limit of this probability. For 
this purpose the user specifies a confidence factor.  
 
The pruning process runs from the leaves to the root. For each leaf having N cases and E 
errors, the estimated error will be N times the pessimistic rate mentioned before. If we 
consider a subtree, the C4.5 algorithm compares the estimated error if the subtree is 
replaced by a leaf with the sum of estimated errors of the branches. If the sum of 
estimated errors of the branches is higher than the estimated error, the subtree will be 
pruned. In the same way, the algorithm checks the estimated error if one of its branches 
replaces the subtree, performs a comparation similar with the one in the previous case and 
after that, the tree is adjusted accordingly. After crossing the tree once, the pruning 
process is completed.  
 
The information about each class propagates throughout the entire tree and this makes 
complex decision trees difficult to understand. In order to simplify the information 
processing, the C4.5 algorithm introduced a list of rules of the form “if A and B and C 
and ... then class X”. This is an alternative formalism based on grouping together the rules 



for each class. For classifying a case, it is enough to find the first rule satisfied in terms of 
meeting the necessary conditions. The case will be assigned to a default class if no rule is 
satisfied.  
 
When the C4.5 algorithm builds rulesets, it uses the unprunned decision tree. When the 
tree is crossed from the root to a leaf, each path becomes a prototype rule. The conditions 
of this rule are all the outcomes along the path and the class of the rule represents the 
label of the leaf. 
 
Then, the rule is simplified by dropping conditions one by one and determining the effect 
of this procedure. When a condition is dropped, two numbers may increase: the number of 
cases covered by the rule (denoted by N) and the number of cases that do not belong to 
the class nominated by the rule (denoted by E). In such condition, the pessimistic error 
rate may decrease. In the next stage, a hill-climbing algorithm is used for dropping 
conditions until the pessimistic error rate takes the lowest value.  
 
For each class in turn a subset of simplified rules is selected and this completes the 
process depicted above. It is chosen a class which will be considered as default. The 
ruleset obtained contains a number of rules much smaller than that of the leaves from the 
decision tree after the pruning process. The algorithm’s rulesets have as a main 
disadvantage the large amount of resources that they involve, if we refer to CPU 
processing time and memory.  
 
In 1977 the C4.5 algorithm was replaced by his successor, a commercial system named 
See5/C5.0. In [7] it is depicted a new version that offers new capabilities and an improved 
efficiency such as: an ensemble of classifiers constructed by a variant of boosting, new 
data types, an improvement in what concerns the interpretability of rulesets, their 
predictive accuracy and the scalability of decision trees and rulesets.  
 
There are still open issues in what concerns the decision trees, such as the obtaining of 
stable trees or decomposing complex trees into a small collection of simple trees that give 
the same result as the complex one [5].  

The Apriori algorithm 

The notion “frequent itemset” refers to those itemsets whose support is greater than some 
user-specified minimum support. Finding such frequent itemsets from a transaction 
dataset represents a very popular approach in data mining and the frequent itemset mining 
is also related to the obtaining of association rules.  
 
In association rule mining, given a set of "itemsets" (for instance, sets of retail 
transactions, each listing individual items purchased), the algorithm attempts to find 
subsets which are common to at least a minimum number C (the cutoff, or confidence 
threshold) of the itemsets. Apriori uses a "bottom up" approach, where frequent subsets 
are extended one item at a time (a step known as "candidate generation") and groups of 
candidates are tested against the data. The algorithm terminates when no further 
successful extensions are found.  



   
 

The Apriori algorithm developed by Agrawal and Srikant in 1994 represents an 
innovative way to find association rules on a large scale, allowing implication outcomes 
that consist of more than one item and it is based on a minimum support threshold. The 
Apriori algorithm is used to find frequent itemsets and it uses candidate generation [8]. 
 
Apriori assumes that items within a transaction are ordered in lexicographic order. We 
will denote by  the set of frequent k-size itemsets and by  candidate itemsets for the 
same level. Taking into account the fact that items must satisfy the minimum support 
requirement, Apriori first scans the database for frequent 1-size itemsets and count those 
items satisfying the above mentioned condition. In the next stage, the algorithm iterates 
the tree steps that follow and extracts all the frequent itemsets. Briefly, the Apriori 
algorithm works as follows: 

1. Using the frequent itemsets of size k Apriori generates , candidates 
itemsets of size k+1 . 

2. Apriori then scans the database and calculates the support for each candidate. 
3. The algorithm selects all itemsets whose support satisfies the minimum support 

requirement and add them to .  
The pseudocode of the algorithm is presented in Fig. 3.  

 
 

Fig.3. The pseudocode of the Apriori algorithm. 
 
The apriori-gen function presented in the above pseudocode generates new candidates 

  from the set of frequent k-size itemsets  in two steps: a join step and a prune 
one. In the join step, the function generates some initial frequent itemsets candidates of 
size , denoted by . If  and  are two k-size frequent itemsets, having in 
common their first  elements,  is the reunion of  and . Denoting by  
the l-th item, than: 

 =  
 , = ,  

where . 
 
In the second step, the apriori-gen function selects those k-size itemsets in  that are 
frequent, removes those one that are not and this is how  is created. The procedure is 



based on the fact that each k-size subset of  can be a subset of a (k+1)-size frequent 
itemset only if it is a frequent subset.  
 
The  function subset mentioned in the above pseudocode locates the transaction t and 
within it finds those candidates of the frequent itemsets. By scanning the database, the 
Apriori algorithm calculates the frequency just for candidates obtained before. The 
Apriori reduces the candidates set’s size thus achieving an improved performance. The 
efforts of generating an increased number of candidates and repeatedly scaning the 
database can lead to a bottleneck in some situations, like a huge number of frequent 
itemsets or large itemsets or when the minimum support is very low. The Apriori 
algorithm is characterized by simplicity, ease of implementation and this is the reason 
why it is often embraced by data miners.    
 
Apriori algorithm represented a starting point for designing more efficient algorithms in 
order to optimize the frequent itemset mining process. The generating candidates model 
implemented in Apriori was adopted by a lot of algorithms like those implemented in 
partitioning, sampling, vertical data format or hash base technique. The frequent pattern 
growth method (FP-growth) offered Apriori the highest degree of improvement because it 
has eliminated the candidate generation step [8]. The implemented strategy of FP-growth 
is “divide and conquer” and is achieved by: 

• the construction of a frequent pattern tree (FP-tree) by using a compressed 
frequent itemsets database.  

• obtaining a conditional databases set by dividing the compressed database. 
Each conditional database has an associated  frequent itemset and it is mined 
separately.  

 
The algorithm scans the database twice. During the first scan, the frequent items are 
obtained, their frequencies are computed and then the items are sorted in a descending 
order of their frequencies. The second scan merges each transaction into a prefix tree and 
counts common items in different transactions. Each of these common items, called node, 
is associated to an item. A pointer, called node-link, is used for linking nodes with the 
same label. All the necessary information is stored in a very compact representation, 
which follows from the fact that are sorted in the descending order of their frequencies 
and thus, nodes are shared by more transactions if they are closer to the root of the tree. 
The frequent pattern growth algorithm choses an item (in the increasing order of the 
frequency) and then calls itself reccursively on the conditional frequent pattern tree for 
extracting frequent itemsets containing the chosen itemset. Obviously, comparing the 
Apriori algorithm and its improved version, the frequent pattern growth method (FP-
growth), one can observe that the second method is considerably faster than the original.    
 
The researchers in data mining consider that the frequent pattern mining could also be 
improved and developed by taking into consideration other issues like: the usage of 
numeric valuable for item, another approach for measures rather than frequency, the 
incorporation of taxonomy in items, closed itemsets mining, the implementation of 
incremental mining and the usage of richer expressions than itemset [5].  



   
 

The AdaBoost algorithm 

Ensemble learning is the process by which multiple models, such as classifiers or experts, 
are strategically generated and combined to solve a particular computational intelligence 
problem [9]. Ensemble learning is particularly useful in improving a model’s performance 
characteristics and in choosing the most suitable model for a certain problem. Usually 
ensemble learning involves multiple learners for solving a particular problem [5].  
 
Ensemble methods offer tremendous potential in solving a problem taking into account 
that an ensemble has a significantly better generalization ability that a single learner. 
In [7] Yoav Freund and Robert Schapire proposed AdaBoost, a very important ensemble 
method based on a solid theoretical foundation offering very accurate prediction and great 
simplicity. In the following we will denote by X the instance space, by  the 
set of class labels, then consider a weak or base learning algorithm and a training set 

. The AdaBoost 
algorithm consists of the following steps: 

• For all the training examples  are assigned equal 
weights. Using the training set D and  the distribution of the weights at the t-th 
learning round (denoted by ), the algorithm generates (by calling the base 
learning algorithm) a weak or base learner .  

• Training examples are used in the next stage for testing and increasing the 
weight of the incorrectly classified examples, obtaining thus the updated weight 
distribution .  

• The algorithm uses the updated weight distribution and the training set for 
generating (by calling again the base learning algorithm) another weak learner. 
The process is repeated T-times. 

• By weighting the majority voting of the T weak learners (their weights are 
determined during the training process) and the final model is obtained.  
The pseudocode of the AdaBoost algorithm is presented in Fig 4.  

In [7], Freund and Schapire introduced the Ada-Boost.M1 for dealing with  
multi-class problems. This improved version requires for the weak learners to be strong 
enough and this requirement is also mandatory on hard distributions that are generated by 
the algorithm. There is also a version based on decomposing a multi-class  task to a series 
of binary ones, called AdaBoost.MH. In the statistic field there have been also developed 
versions of AdaBoost algorithm, used for dealing with regression problems.  

 



 
Fig.4. The pseudocode of the AdaBoost algorithm. 

 
In the literature many interesting topics related to AdaBoost have been researched. One of 
them is the test error which often tends to decrease even after the training error is zero. 
Schapire et al. argued that AdaBoost can increase the margins further even if the training 
error has reached zero. Breiman mentioned that a larger margin does not necessarily equal 
a better generalization. Reyzin and Schapire concluded that the margin-based explanation 
may still be valid because Breiman had analyzed the minimum margin instead of average 
or median margin. Based on Viola and Jones’s work, X. Wu et al. [5] consider that 
AdaBoost could be very useful in feature selection, especially when considering that it 
has solid theoreticalfoundation. Even if current research mainly focuses on images, X. Wu 
et al. think general AdaBoost-based feature selection techniques are well worth studying.   

Support vector machines 

Support vector machines (SVM) offer robust and accurate methods in today’s machine 
learning applications. The number of dimension does not influence the outcome and a 
reduced number of examples are enough for the training. When dealing with a two-class 
learning task, the SVM tries to identify the best classification function (using a 
geometrically approach) that distinguishes between the two classes’ members. 
 
The function separates linearly the two classes with a separating hyperplane  that 
passes through their middle. The new instance  is classified after the function has been 
determined by analyzing the sign of the function’s value . If this value is greater 
than zero then  belongs to the positive class.  
 
The support vector machines find the best function by maximizing the two classes’ 
margin. The shortest distance between the closest data points to a point on the hyperplane 
corresponds to the margin, so even if there is infinity of hyperplanes, the solution to SVM 
could be provided only by a few of them. The maximum margin hyperplanes offer the 
best generalization and classification performance, so support vector machines try to 
discover it. 
 



   
 

In order for the maximum margin hyperplanes to be discovered, a support vector machine 
classifier tries to maximize the following function with respect to the  vectors and the 
constant : 

 
where is the number of training examples,  are non-negative numbers 
and  the derivatives of  with respect to are zero. The numbers  are called the 
Lagrange multipliers and the function  is called the Lagrangian. The vectors  and the 
constant  define the hyperplane.  
 
Based on some parameters  the support vector machines can be modeled as a function 
class. A parameter h, also known as the VC dimension represents the different capacity in 
learning of the different function classes. The VC dimension measures the cases when the 
obtained error rate is zero and so it provides the maximum number of training examples 
where the function class can be applied to learn flawlessly.  
 
The actual error on the future data depends by the sum of two elements: the training error 
and the parameter h (the VC dimension). If h is minimized, so is the future error, as long 
as the training error is also minimized.  
 
In [5] it is presented a “soft margin” idea that tries to extend he SVM algorithm. A slack 
variable is introduced for accounting the amount of classification errors by the 
function . The  variable is interpreted as the distance from the data that has been 
classified prone to error to the hyperplane . The original objective minimization 
function can be revised using the total cost that was created by the slack variables. 
 
In order for the support vector machines to work when the training data is not linearly 
separable a kernel function can be applied if we extend the dot product  through a 
functional mapping  of each  to a different space  of larger or infinite 
dimensions, case in which the equations still hold. Everywhere where appears the dot 
product , this is replaced with a kernel function defined by the dot product of the 
vectors transformed by applying  meaning . A large class of nonlinear 
relationship between inputs can be defined by the kernel function.  
Support vector machines can also be used to perform numerical calculations such as 
regression analysis and to learn to rank elements rather than producing a classification for 
individual elements. 
A significant drawback for this method is that support vector machines require a 
tremendous computational power. In order to solve this problem, one can divide a large 
optimization problem into smaller ones, chosen in such a way that every small problem 
depends only on a couple of variables and this optimizes the entire process. The 
decomposed optimization problems are solved through an iteration process.  



The main data mining algorithms implemented in Microsoft and Oracle software 
products  

In the following we will depict the main data mining algorithms implemented in 
Microsoft and Oracle software products. As mentioned before, a data mining algorithm 
analyzes a set of data and looks for specific patterns and trends in order to create a model. 
Based on the results of this analysis, the algorithm defines the parameters of the mining 
model which are then applied across the entire data set to extract patterns and statistics. A 
few examples of the multiple forms that data mining models (created by a data mining 
algorithm) can take are: rules describing how to conduct the transaction in terms of 
grouping products, a prediction method based on decision trees and used for evaluating 
whether a customer will buy a product, a forecasting sales model based on mathematical 
issues, a description of related cases in a dataset based on a set of clusters and others.  
A useful and practical tool in data mining is Microsoft SQL Server Analysis Services, 
which provides several algorithms for data mining solutions [10]. A few of the most 
important existing algorithm types are included in this tool and described in Fig. 5.    
 

 
Fig. 5. The most important existing algorithm types 
included in Microsoft SQL Server Analysis Services. 

 
 
One of the most important challenges in data mining is the choosing of the most suitable 
algorithm for solving a specific task and this should be made taking into account some 
important facts as: 

• a business task can be performed using different algorithms 
• the result produced by each algorithm is different 
• there are some algorithms which can produce more types of results. For 

example, Microsoft Decision Trees algorithm could be used for prediction 
and also for reducing the number of columns in a dataset based on the fact 
that the decision tree identifies columns that do not affect the final mining 
model. 



   
 

• for obtaining a single data mining solution, algorithms could be used 
together, not independently. For example, some algorithms could be used for 
exploring data and after that, some other algorithms could be used in order to 
predict a specific outcome based on that data.  

• separate tasks could be performed by multiple algorithms within one 
solution. For example, in order to obtain financial forecasting information 
one can use a regression tree algorithm first and then a rule-based algorithm 
that is best suitable to perform a market basket analysis. 

• using mining models one can facilitate the prediction of values, the 
production of data summaries, the finding of some hidden correlations. 

Below are presented some suggestions and criteria useful for choosing the most 
recommended algorithm for solving the mentioned task (Table 1).  
 

Task Example Microsoft algorithms to use 

Predicting a 
discrete attribute 

Predict whether the recipient 
of a targeted mailing 

campaign will buy a product 

Microsoft Decision Trees 
Algorithm 

Microsoft Naive Bayes 
Algorithm 

Microsoft Clustering 
Algorithm 

Microsoft Neural Network 
Algorithm 

Predicting a 
continuous 
attribute 

Forecast next year's sales 

Microsoft Decision Trees 
Algorithm 

Microsoft Time Series 
Algorithm 

Predicting a 
sequence 

Perform a clickstream analysis 
of a company's Web site 

Microsoft Sequence 
Clustering Algorithm 

Finding groups of 
common items in 

transactions 

Use market basket analysis to 
suggest additional products to 

a customer for purchase 

Microsoft Association 
Algorithm 

 
Microsoft Decision Trees 

Algorithm 

Finding groups of 
similar items 

Segment demographic data 
into groups to better 

understand the relationships 
between attributes 

Microsoft Clustering 
Algorithm 

 
Microsoft Sequence 

Clustering Algorithm 
Table 1. Suggestions and criteria useful for choosing 

the most recommended algorithm. 
 
One of the options included in Oracle Corporation's Relational Database Management 
System Enterprise Edition is the Oracle Data Mining (ODM) [11], which:  



• contains several data mining and data analysis algorithms designed for 
classification, clustering, prediction, associations, regression, anomaly 
detection, feature selection, feature extraction and specialized analytics.  

• offers facilities for the creation of data mining models, for their management 
and deployment. 

• implements inside the Oracle relational database a variety of data mining 
algorithms, integrates these implementations into the database’s kernel and 
as a consequence eliminates some operations: the extraction and transfer of 
data through mining servers.  

The secure managing of models and the efficient execution of SQL queries on large 
volumes of data are facilitated by the database platform. A general unified interface for 
data mining functions is provided by a few generic operations (around which the system 
is organized) including functions designed to create data mining models, to apply, test and 
manipulate them. Created and stored as database objects, these models are managed 
within the database as all the other contained objects.  
 
After a data mining program generates a model, it could be used by the same data mining 
program to derive predictions or descriptions of behavior. In order to obtain predictions, 
the new generated model can be applied to all the new information. The technique 
implemented in the data mining model and used to make predictions about the studied 
behavior is called “scoring” and the prediction offered by the model is called “the score”. 
ODM offers some Oracle SQL functions for scoring data stored in the database and 
therefore one can efficiently use the features offered by Oracle SQL: the ability to 
pipeline and manipulate the results over several levels and also the parallelizing and 
partitioning of data access for performance.  
 
The data never leaves the database: data, data preparation, model building and model 
scoring results remain in the database. This enables Oracle to provide an infrastructure for 
application developers to integrate data mining seamlessly with database applications. 
 
Oracle Data Mining (ODM) provides a broad suite of data mining techniques and 
algorithms to solve many types of business problems [11]. These data mining techniques 
and algorithms are presented below (Table 2).  
 

Techniques Applicability Oracle Data Mining 
Mining Algorithms 

Classification 

Most commonly used technique for predicting a 
specific outcome such as response/no-response, 

high /medium/low-value customer, likely to 
buy/not buy. 

Logistic Regression 
Naive Bayes 

Support Vector 
Machine 

Decision Tree 

Regression  
 

Technique for predicting a continuous numerical 
outcome such as customer lifetime value, house 

value, process yield rates. 

Multiple Regression 

Support Vector 
Machine 



   
 

Attribute 
Importance  

 

Ranks attributes according to strength of 
relationship with target attribute. Use cases 
include finding factors most associated with 

customers who respond to an offer, factors most 
associated with healthy patients. 

Minimum 
Description Length 

Anomaly 
Detection  

 

Identifies unusual or suspicious cases based on 
deviation from the norm. Common examples 

include health care fraud, expense report fraud, 
and tax compliance. 

One-Class Support 
Vector Machine 

Clustering  
 

Useful for exploring data and finding natural 
groupings. Members of a cluster are more like 

each other than they are like members of a 
different cluster. Common examples include 

finding new customer segments, and life 
sciences discovery. 

Enhanced K-Means 

Orthogonal 
Partitioning 
Clustering 

Association  
 

Finds rules associated with frequently co-
occuring items, used for market basket analysis, 

cross-sell, root cause analysis. Useful for product 
bundling, in-store placement, and defect 

analysis. 

Apriori 

Feature 
Extraction  

 

Produces new attributes as linear combination of 
existing attributes. Applicable for text data, 

latent semantic analysis, data compression, data 
decomposition and projection, and pattern 

recognition. 

Non-negative Matrix 
Factorization 

Table 2. Data mining techniques and algorithms provided by Oracle Data Mining. 
 
Implemented in the Oracle Database kernel, Oracle Data Mining models are first class 
database objects, while Oracle Data Mining processes maximize scalability and make 
efficient use of system resources through the usage of built-in features of Oracle 
Database. Data mining within Oracle Database offers many advantages, as shown in 
Table 3.  
 
 
 
 
 
 
 

The 
Advantage Details 



No Data 
Movement 

• Some data mining products require that the data be exported 
from a corporate database and converted to a specialized 
format for mining. 

• With Oracle Data Mining, no data movement or conversion is 
needed. 

• This makes the entire mining process less complex, time-
consuming, and error-prone. 

Security 

• Your data is protected by the extensive security mechanisms of 
Oracle Database. 

• Moreover, specific database privileges are needed for different 
data mining activities. 

• Only users with the appropriate privileges can score (apply) 
mining models. 

Data 
Preparation and 
Administration 

• Most data must be cleansed, filtered, normalized, sampled, and 
transformed in various ways before it can be mined. 

• Up to 80% of the effort in a data mining project is often 
devoted to data preparation. 

• Oracle Data Mining can automatically manage key steps in the 
data preparation process. 

• Additionally, Oracle Database provides extensive 
administrative tools for preparing and managing data. 

Ease of Data 
Refresh 

• Mining processes within Oracle Database have ready access to 
refreshed data. 

• Oracle Data Mining can easily deliver mining results based on 
current data, thereby maximizing its timeliness and relevance. 

Oracle 
Database 
Analytics. 

• Oracle Database offers many features for advanced analytics 
and business intelligence. 

• Oracle Data Mining can easily be integrated with other 
analytical features of the database, such as statistical analysis 
and OLAP. 

• See "Oracle Data Mining and Oracle Database Analytics". 

Oracle 
Technology 

Stack 

• You can take advantage of all aspects of Oracle's technology 
stack to integrate data mining within a larger framework for 
business intelligence or scientific inquiry. 

Domain 
Environment 

• Data mining models have to be built, tested, validated, 
managed, and deployed in their appropriate application domain 
environments. 

• Data mining results may need to be post-processed as part of 
domain specific computations (for example, calculating 
estimated risks and response probabilities) and then stored into 
permanent repositories or data warehouses. 

• With Oracle Data Mining, the pre- and post-mining activities 
can all be accomplished within the same environment. 



   
 

Application 
Programming 

Interfaces 

• PL/SQL and Java APIs and SQL language operators provide 
direct access to Oracle Data Mining functionality in Oracle 
Database. 

Table 3. Advantages of data mining within Oracle Database. 

Conclusions and further research 

Data mining comprises techniques and algorithms for determining interesting patterns 
from large datasets and has applications in a large set of domains including business and 
science, such as web analysis, targeted marketing, disease diagnosis and outcome 
prediction, weather forecasting, credit risk and loan approval, customer relationship 
modeling, fraud detection and many others. The above mentioned techniques cover a 
wide area of fields integrating statistics, pattern recognition, database systems, artificial 
intelligence and machine learning in the purpose of analyzing huge amounts of data. In 
order to perform different data analysis tasks such as clustering, classification, frequent 
pattern mining and others, researchers have created, developed and implemented hundreds 
(or even more) data mining algorithms. The understanding of the usage and improvement 
of those algorithms are real challenges for scientists, analysts, researchers, practitioners.   
 
In this paper we have depicted some of the most widely used data mining algorithms. The 
main criteria used for choosing them was their utility and influence in the research 
community. They refer to topics such as: clustering, classification, association analysis, 
statistical learning, link mining. Each algorithm’s study starts with its brief description 
followed by its application potential and research issues concerning the optimization of 
the data mining process.  
 
We have also depicted the most important existing data mining algorithms included in 
Microsoft and Oracle software products, suggestions and criteria useful for choosing the 
most recommended algorithm for solving a mentioned task, advantages offered by these 
software products. Both products can be used to build stable, efficient system. The 
stability, effectiveness of applications and databases depend rather on the experience of 
the database developers and database administrators than on the database's provider.  
 
An important and interesting issue regarding the data mining process is real time data 
mining, which will enable scientists to develop researches on a scale that seemed 
unimaginable until recently [8]. In order to improve data analysis, both hardware 
architectures and data mining algorithms must properly manage and process huge 
volumes of data. This improvement could be achieved through the development and 
implementation of new parallel processing algorithms and novel hardware architectures. 
In recent years there have been developed new techniques and data mining methods 
useful for the discovering of new patterns, clusters and for the classifying of different 
types of data. The optimization of a data mining algorithm must take into account some 
targets, as the improvement of the data extraction process quality and also the reducing of 
the response time.  
 
Further research in the field of data mining algorithms used for optimizing the data 
mining process must refer to both improving existing algorithms and developing new 
ones, based on modern and powerful hardware architecture. As an example, the Compute 



Unified Device Architecture, a revolutionary software and hardware parallel computing 
architecture from NVIDIA, allows the graphics processor to execute programs written in 
C, C++, FORTRAN, OpenCL, Direct Compute and other languages. Some algorithms 
based on the Compute Unified Device Architecture programming model, implementing 
some kind of parallelism and based all on the MapReduce programming model are 
depicted in [8], [12].  
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