
1

THE RANDOM ITERATION ALGORITHM

Daniela Alexandra CRIŞAN, PhD
Justina Lavinia STĂNICĂ, PhD Candidate

Romanian – American University, Bucharest, Romania

dacrisan@yahoo.com, lavinia.stanica@gmail.com

ABSTRACT
In the last decades, many researchers concerned their attention on
fractals properties of objects. Fractals can be use to describe natural
shapes so their applications are various in many fields such as
informatics, economics, engineering, medical studies. In this paper
we present a way to describe fractal, using the Iterated Function
System (IFS). We present the random iterated algorithm
implemented in the C++ programming language used to generate
selfsimilar fractals.
Keywords: fractal, IFS, random iteration algorithm

1. INTRODUCTION
Around the year 1970, the French mathematician Benoit Mandelbrot
introduced the concept of Fractals in order to describe some dynamic
systems. Although Mandelbrot named these features as fractals,
other mathematicians have studied those forms years before: Cantor,
Sierpinski and Koch were attracted by the strange properties of these
forms around the beginning of the XIX century. In 1918, the
German mathematician introduced the fractional dimension.
Mandelbrot defined a fractal as a form with self-similarity: a form
composed by copies transformed of him. Also, as one looks more
deeply or more closely at a fractal, its inner parts have a similar
design to that of the whole object.

mailto:dacrisan@yahoo.com

2

(a) (b)
Fig. 1. Two famous fractal: (a)Sierpinski Triangle and (b) Barnsley
Fern, composed by copies of the whole object.
Later he proposed another definition: a fractal is a form with a
fractional dimension. In Euclidian terms a form can be one-
dimensional (lines), two-dimensional (filled figures such as squares,
trapezoids, and circles), and three-dimensional (filled objects such as
cubes and spheres) objects. Fractals have dimensions that are in
between these three integer dimensions.
2. ITERATED FUNCTION SYSTEM (IFS)
An Iterated Function System (IFS) is a finite collection of
contractions Fi: X X defined on a metric space X. Each extends to
a mapping (different but denoted by the same letter) Fi: H(X)
H(X), where H(X) is the space whose points are nonempty compact
subsets of X. When endowed with the Hausdorff metric, H(X) is
complete if X is. In addition, contractions FiX X remain
contractions as mappings of H(X). Together, the Fi define another
contraction F: H(X) H(X), by the following formula: for every A

H(X), F(A) = Fi(A). M. Barnsley demonstrated that since we
are working in a complete metric space, F has a fixed point (set!) AF,
so that F(AF) = AF, and this point can be reached by successive
approximations from any starting location. This result is known as
the College Theorem. Fixed points of IFSs are called attractors or
invariant sets.
Two problems arise: the direct and the inverse one. The direct
problem is to find the fixed point of a given IFS and is solved by
what is known as the deterministic algorithm. Start with a set A0
H(X) and compute successively Ak = Fi(Ak-1) = F(Ak-1), k > 1.

3

The sequence {Ak) converges to the fixed point AF of {Fi} as k
.

The inverse problem is: for a given set A H(X), find an IFS {Fi}
that has A as its fixed point. The mathematics of the second, random
iteration algorithm is more complex but implementation is more
straightforward. Assign positive frequencies pi to the mappings Fi.
Start with an arbitrary point x0 X. At every step k+1, select xk+1
from the set {Fi(xk)}. Fj(xk) is selected with the probability pj / pi.
The sequence {xk} converges to AF. In practical terms, to depict an
approximation of AF on a computer, the points of the sequence are
displayed starting with a reasonably large index. The numbers {pi}
have no effect on the fixed point AF but influence significantly the
rendering of its approximations. The inverse problem is the base of
the fractal compression: it is more efficient to store into computer the
parameters defining the IFS that the whole image.
3. IFS AND FRACTALS
Fractal can be represented using iterated function system (IFS).
Considering that a fractal is a composed by copies of himself, each
transformation in the IFS describes the affine transformation
characterizing every copy.
An affine transformation is a function:
f(x, y) = (a*x+b*y+e, c*x+d*y+f),
x, y∈X
with the parameters a, b, c, d, e, f .
It can be written also as:

+

=

f
e

y
x

dc
ba

yxf),(.

Consider the famous selfsimilar fractal the Sierpinski Triangle
composed by tree copies of himself:

4

+

=

+

=

+

=

32/1
2/1

*
2/10

02/1
),(

,
0
1

*
2/10

02/1
),(

,
0
0

*
2/10

02/1
),(

3

2

1

y
x

yxf

y
x

yxf

y
x

yxf

Fig. 2. The Sierpinski Triangle and the associated IFS
Two other interesting results are the Barnsley’s Fern and the
Heighway dragon presented below.

+

−

=

+

−
=

+

 −
=

+

=

5.1
0

*
85.005.0
05.085.0

),(

,
45.0
0

*
25.025.0
3.015.0

),(

,
5.1

0
*

2.02.0
25.02.0

),(

,
0
0

*
15.00
00

),(

4

3

2

1

y
x

yxf

y
x

yxf

y
x

yxf

y
x

yxf

5

Fig. 3. The selfsimilar fractal Barnsley’s Fern and the associated IFS

+

=

+

=

+

=

32/1
2/1

*
2/10

02/1
),(

,
0
1

*
2/10

02/1
),(

,
0
0

*
2/10

02/3),(

3

2

1

y
x

yxf

y
x

yxf

y
x

yxf

Fig. 4. The Heighway dragon and the associated IFS

4. THE RANDOM ITERATION ALGORITHM
The random iteration algorithm is a form of the deterministic
algorithm. Knowing the IFS we can generate the fractal associated to
it, using the direct problem and the college theorem discussed above.
Starting with a single point, we can transform it using the IFS-
transformations for thousands times and finally we obtain the fractal
we want.

6

The method may be illustrated with the Yuval Fisher’s special
copyrighter which receives as entry an arbitrary image (may be a
point) and applies to it the set of affine transformation, generating a
new image. The image obtained is transmitted, using a feedback
process, on the entry of the copyrighter and the process is repeated
for several times. For example, consider that the transformations are
those which describe the Sierpinski Triangle. If we test the Yuval
Fisher copyrighter for different initial images we can observe that the
final image is the same, so it not depends on the initial image but is
defined by the affine transforms applied to it:

Fig. 5. The Yuval Fisher copyrighter
The algorithm is:
P1. Set (x,y) the starting point - may be (0,0);
P2. Let (x1, y1) be the point obtained by applying an arbitrary
transformation in the IFS; repeat the second step with (x1,y1) as
initial point
In the section below we implemented the algorithm in C++
programming language; consider that PutPixel(x,y) is a function
which display on screen a point with coordinates (x,y).
void IFS(double p[][6], int n)
//n=numar transformari
//p[k][0]=r
//p[k][1]=s
//p[k][2]= α
//p[k][3]=β
//p[k][4]=e
//p[k][5]=f
{
 double a, b, c, d, e, f;
 int x = 0., y = 0.;//starting point
 int k;//current transformation

7

 int xx;
 srand((unsigned)time(NULL));
 for(long i=0;i<10000;i++)

{
k=rand()%n; //an arbitrary transformation
a= p[k][0] *cos(p[k][2]*PI/180);
b = -p[k][1]*sin(p[k][3]*PI/180);
c =p[k][0]*sin(p[k][2]*PI/180);
d = p[k][1]*cos(p[k][3]*PI/180);
e = p[k][4];
f = p[k][5];
xx = a*x + b * y + e;
y = c*x+d*y+f;
x = xx;
PutPixel(x, y);
 }
}
CONCLUSIONS
In 1900’s decades, fractals were regarded as “strange images”.
Representing a fractal image (although the name “fractal” was
imagined much later, around 1970) was a difficult task; these forms
were studied only for mathematical reasons. In 1981 John
Hutchinson defines the Iterated Function System theory in his work
„Fractals and selfsimilarity” (Hutchinson, [10]). Later, in 1988 the
American researcher Michael Barnsley succide to demonstrate the
collage theorem in his works „Fractals everywhere” (Barnsley, [1]).
The collage theorem yield to the random iteration algorithm, those
implementation in C++ language is presented above and which is
very ingeniously illustrated by Yuval Fisher’s special copyrighter. It
is one of the most used methods of generating a selfsimilar fractals
such are Sierpinski Triangle, Barnsley’s Fern and Heighway dragon
exemplified above.
As this paper shows, the random iteration algorithm is very simple, it
is easy to implement in any programming language and the results it
generates are very spectacular and may be used for any graphical
goal, not only for mathematical resons!

8

BIBLIOGRAPHY
[1] Barnsley M., “Fractals Everywhere, 2nd ed.”, Academic Press, Boston,

1993
[2] Barnsley, M., S.G. Demko, "Iterated Function Systems and the Global

Construction of Fractals" Proc.Roy.Soc.London, Ser.A 399, 1985, 243-
275

[3] Buchnicek M., M. Nezadal, O. Zmeskal, „Numeric calculation of
fractal dimension”, Nostradamus 2000, Prediction Conference, 2000;

[4] Chen S., J.M. Keller and R.M. Crownover, “On the calculation of
fractal features from images”, IEEE PAMI, 1998

[5] Crişan D., "Fractal spectrum of gray-level images", Cercetare
ştiinţifică. Sesiunea cadrelor didactice, Universul Juridic, Bucureşti,
2005

[6] Dobrescu R.(ed), C. Vasilescu (ed), “Interdisciplinary Applications Of
Fractal And Chaos Theory”, Academia Română, Bucureşti, 2004

[7] Y., “Fractal image compression with quadtree”, Fractal Compression
Theory and Application to digital images, Springer Verlag, New York,
1994

[8] Fisher Y., E.W. Jacobs, R. D. Boss, “Fractal image compression using
iterated transformes”, NOSC Techical Report, Naval Ocean System
Center, San Diego, 1995

[9] Harris J. W., H. Stocker, "Hausdorff Dimension", "Scaling Invariance
and Self-Similarity", "Construction of Self-Similar Objects.", cap.
4.11.1-4.11.3, Handbook of Mathematics and Computational Science,
Springer-Verlag, New York, 1998, pg. 113-135

[10] Hutchinson J., "Fractals and Self-Similarity.", Indiana Univ. Journal
Mathematics, 35, 1981, pg. 713-747

[11] Jaquin A. E., “Image coding based on a fractal theory of iterated
contractive image transformation”, IEEE Trans. On Image Processing,
vol I, No 1, January 1992

[12] Lauwerier H., “Fractals: Endlessly ŞRepeated Geometric Figures”
Princeton, NJ: Princeton University Press, 1991, pg. 29-31

[13] Mandelbrot B. „The fractal geometry of nature”, Freeman, New York,
1983

http://www.amazon.com/exec/obidos/ASIN/0120790610/ref=nosim/weisstein-20
http://www.amazon.com/exec/obidos/ASIN/0387947469/ref=nosim/weisstein-20
http://www.amazon.com/exec/obidos/ASIN/0691024456/ref=nosim/weisstein-20

