

A MODEL FOR THE AUTOMATION OF HTML FORM CREATION AND

VALIDATION

Dragos-Paul Pop1
Adam Altar2

Abstract

Forms are an essential part of web applications, but handling large forms proves to be
very time consuming. This article proposes a model for automating HTML form creation
and validation and shows how it could be used to greatly speed up web application
development.

Keywords: html, form, web, automation, validation, class, model.

Introduction

One of the most common tasks in web application development is form processing. Along
with data presentation (tabular data most of the times), form building and processing takes
the most amount of time and work. HTML form elements look, feel and act different.
This is because the HTML standard had a rough evolution. Elements don’t really follow a
clear pattern. They don’t have the same structure, attributes, behavior and don’t send data
to the server in the same way. Furthermore, certain elements became deprecated over time
and others changed ever so slightly. Designing an automated system that builds forms and
validates them would help save developer time and effort and also ensure that the markup
follows standards.

Forms are important because they allow users to enter data. But the HTML standards are
quite counterintuitive. For example, one can define a text box by using the input element
with the value text set for the type attribute. That seems normal, but when trying to create
a text box that spans multiple rows, the textarea element needs to be used. The differences
don’t stop here. While the input element doesn’t have a closing tag, the textarea has one.

Html Standards And Form Elements

Below, there is a list of classical form elements (prior to HTML 5), their status and the
time they were introduced in the HTML standards, as listed by Wikipedia:

Element Description
form Creates a form. The form element specifies and operates the overall

action of a form area, using the required action attribute.
Standardized in HTML 2.0; still current.

button A generic form button which can contain a range of other elements

1 Ph.D. Student at the Academy of Economic Studies and Teaching Assistant at the Romanian-American
University, Bucharest, Romania; email: dragos_paul_pop@yahoo.com
2 Ph.D. Student at the Academy of Economic Studies and Teaching Assistant at the Romanian-American
University, Bucharest, Romania; email: adamalt@gmail.com

to create complex buttons.
Standardized in HTML 4.0; still current.

fieldset A container for adding structure to forms. For example, a series of
related controls can be grouped within a fieldset, which can then
have a legend added in order to identify their function.
Standardized in HTML 4.0; still current.

isindex isindex could either appear in the document head or in the body, but
only once in a document.
Isindex operated as a primitive HTML search form; but was de-facto
obsoleted by more advanced HTML forms introduced in the early to
mid-1990s. Represents a set of hyperlinks composed of a base URI,
an ampersand and percent-encoded keywords separated by plus
signs.
ISINDEX existed in HTML Tags; standardized in HTML 2.0;
deprecated in HTML 4.0 Transitional; invalid in HTML 4.0 Strict.

label Creates a label for a form input (e.g. radio button). Clicking on the
label fires a click on the matching input.
Standardized in HTML 4.0; still current.

legend A legend (caption) for a fieldset.
Standardized in HTML 4.0; still current.

option Creates an item in a select list.
Standardized in HTML 2.0; still current.

optgroup Identifies a group of options in a select list.
Standardized in HTML 4.0; still current.

select Creates a selection list, from which the user can select a single
option. May be rendered as a dropdown list.
Standardized in HTML 2.0; still current.

textarea A multiple-line text area, the size of which is specified by cols
(where a col is a one-character width of text) and rows attributes.
The content of this element is restricted to plain text, which appears
in the text area as default text when the page is loaded.
Standardized in HTML 2.0; still current.

input input elements allow a variety of standard form controls to be
implemented.
Standardized in HTML 2.0; still current.

The different input types are listed below:
type="checkbox" A checkbox. Can be checked or unchecked.
type="radio" A radio button. If multiple radio buttons are given the same name,

the user will only be able to select one of them from this group.
type="button" A general-purpose button. The element <button> is preferred if

possible (i.e. if the client supports it) as it provides richer
possibilities.

type="submit" A submit button.
type="image" An image button. The image URL may be specified with the src

attribute.
type="reset" A reset button for resetting the form to default values.

type="text" A one-line text input field. The size attribute specifies the default

width of the input in character-widths. maxlength sets the maximum
number of characters the user can enter (which may be greater than
size).

type="password" A variation of text. The difference is that text typed in this field is
masked - characters are displayed as an asterisk, a dot or another
replacement. It should be noted, however, that the password is still
submitted to the server as clear text, so an underlying secure
transport layer like HTTPS is needed if confidentiality is a concern.

type="file" A file select field (for uploading files to a server).
type="hidden" hidden inputs are not visible in the rendered page, but allow a

designer to maintain a copy of data that needs to be submitted to the
server as part of the form. This may, for example, be data that this
web user entered or selected on a previous form that needs to be
processed in conjunction with the current form.

HTML 5 introduces some new elements and further improves existing ones. Still, some
features are unsupported in most browsers, but this is because HTML5 is a work in
progress. Below there are some tables with the improvements that HTML5 brings to
forms, as described by the World Wide Web Consortium and the www.html5rocks.com
website. Below each table there is browser support table outlining how each feature is
supported across modern browsers. The + sign means “this version and above”, the – sign
means “this version and below”. A green (or light gray) color denotes that the feature is
supported. Red (or dark gray) marks the lack of browser support, while orange (or gray)
was used to mark partial support. The browser support tables are found at
http://wufoo.com/html5/.

HTML5 introduces 5 new elements related to input and forms.

Element Purpose Notes

progress Represents completion of a task. The progress element could represent
the progress of a file being uploaded.

meter Represents a scalar measurement
within a known range.

The meter element could be used to
represent something like a
temperature or weight measurement.

datalist Represents a set of option elements
that can be used in combination with
the new list attribute for input to
make dropdown menus.

When the input with the associated
datalist gets focus, a dropdown menu
appears and contains the values from
the datalist.

keygen A control for key-pair generation. When the form is submitted, the
private key gets stored in the local
keystore, and the public key is sent to

the server.

output Displays the results of a calculation. An example use of the output element
could be to display the sum of the
values of two input elements.

HTML5 introduces 13 new input types. When viewed in a browser that doesn't support
them, these input types fall back to text input.

Input Type Purpose Notes
tel For entering a telephone

number.
tel does not enforce a particular syntax,
so if you want to ensure a particular
format, you can use pattern or
setCustomValidity() to do additional
validation.

search To prompt users to enter text
that they want to search for.

The difference between search and text
is primarily stylistic. Using an input type
of search might result in the input field
being styled in a way that is consistent
with that platform's search fields.

url For entering a single URL. url is intended for entering a single,
absolute URL, which represents a pretty
wide range of values.

email For entering either a single
email address or a list of email
addresses.

If the multiple attribute is specified, then
multiple email addresses can be entered,
separated by commas.

datetime For entering a date and time
with the time zone set to UTC.

date For entering a date with no
time zone.

month For entering a date with a year
and a month, but no time zone.

week For entering a date that
consists of a week-year
number and a week number,
but no time zone.

An example of this format is 2011-W05
for the fifth week of 2011.

time For entering a time value with

hour, minute, seconds, and
fractional seconds, but no time
zone.

datetime-
local

For entering a date and time
with no time zone.

number For numerical input. Valid values are floating point numbers.
range For numerical input, but

unlike number, the actual is
not important.

The implementation of the range control
is a slider in most browsers that support
it.

color For choosing color through a
color well control.

The value must be a valid lowercase
simple color such as #ffffff.

HTML5 also introduces several new attributes for the input and form elements.

Attribute Purpose Notes
autofocus Focuses the input on the

element when the page is
loaded.

autofocus can be applied to input,
select, textarea, and button.

placeholder Gives the user a hint about
what sort of data they should
enter.

The placeholder value is displayed in
light text until the element gets focus
and the user enters some data. It can
be specified on input and textarea.

form Specifies one or more forms to
which the input element
belongs.

By using the form attribute, the input
elements can be placed anywhere on
the page, not just within the form
element. Also, a single input element
can be associated with more than one
form.

required A boolean attribute that means
the element is required.

The required attribute is helpful for
doing browser-based validation

without using custom JavaScript.
autocomplete For specifying that a field

should not autocomplete or be
pre-filled by the browser based
on a user's past entries.

The autocomplete attribute for fields
like a credit card number or one-time
password, which you don't want
autocomplete. By default,
autocomplete is in the on state, so if
you want to disable it, set it to off.

pattern For validating an element's
value against a regular
expression.

When using a pattern, you should
also specify a title value to give the
user a description of the pattern that's
expected.

dirname For submitting the
directionality of the control
with the form.

For example, if the user entered text
data with right-to-left directionality
and the input element contained the
dirname attribute, then an indication
of the right-to-left directionality
would be submitted along with the
input value.

novalidate For disabling form submission
validation when specified on a
form element.

formaction For overriding the action
attribute on the form element.

This attribute is supported on input
and button elements.

formenctype For overriding the enctype
attribute on the form element.

This attribute is supported on input
and button elements.

formmethod For overriding the method
attribute on the form element.

This attribute is supported on input
and button elements.

formnovalidate For overriding the novalidate
attribute on the form element.

This attribute is supported on input
and button elements.

formtarget For overriding the target
attribute on the form element.

This attribute is supported on input
and button elements.

The Model For Automated Form Creation And Validation

Before starting to build the model, a few key requirements have to be set for the model to
work. These are:

• The ability to build a form as a standalone HTML element
• The ability to build a form by supplying a collection of form elements
• The ability to build a form based on a database table
• The ability to add a certain field to an already built form
• The ability to retrieve an element from the form by id or elements by attribute

value or tag name
• The ability to set filters on form fields, such as the field being required (the form

will not validate if the field is empty), certain minimum and maximum lengths for
the field values, validating an email, equality between two fields in the same form
and so on

• The ability to build user-friendly forms
• The form also has to validate file uploads

Some of the requirements will be met if the model extends from the HTMLElement
model introduced in an earlier article (JISOM 5.2). The HTMLElement has the following
structure:

HTMLElement

Property Description
element The type of the element itself; can be any of the

supported (X)HTML elements, like an anchor, a
paragraph, an image, a list and so on.

attributes The attribute list of the element. Implemented as an
array of key=>value pairs, with the key being the name
of the attribute.

innerHTML The inner text of the html element. This would be text
if the element is a paragraph, for example, but it may
also be html text like the list items in an unordered list.
Elements that don’t have a closing tag are not allowed
to have innerHTML.

children An array of instances of the HTMLElement class that
are direct descendants of the current element. This
greatly helps in keeping track and managing tree-like
structures.

parent A reference to the HTMLElement parent of the current
element, if it has any. Also helps with nesting of html
elements.

code The rendering of the element as a string to be placed in
a web page.

Method Description
constructor Optionally receives the tag name and a list of attributes

for the element to be created
add_child Requires an HTMLElement as an argument and

appends that element to the end of children array of the
current element. In effect it adds a child just before the
closing tag of the current element.

add_child_after Requires an HTMLElement and a neighbor id.
Searches among the children of the current element for
the child with the id given as the second argument and
adds the first argument as a neighbor after it.

prepend_child Requires an HTMLElement as the only argument and
adds it as the first child of the current element.

get_child_by_id Searches among the children of the current element
and returns the one that has an id equal to the
argument that the method received.

get_child_by_property Searches for the first child of the current element that
has an attribute with a value given as arguments to the
method.

get_children_by_property Returns all children with the attribute=>value pair

supplied as arguments.
get_children_by_tag_name Returns all children of the current element that are

instances of a certain html element. Requires the tag
name as an argument.

code Method responsible with rendering the html string
representation of the element with all attributes and
children.

Building on the above structure, the Form model adds the following:

Form

Property Description
model or table If the form being built reflects the structure of a database

table or a model in an mvc architecture, this would be the
name of that object.

fields An array containing the names of the fields from the table
or model that should be included in the form.

filters An array of filters against which the form is validated.
This array could be implemented as a series of arrays
indexed by field id and having name, value and error
message dimensions. It could also be implemented as
objects of a type Filter.

submit The string label of the submit button
description An array of descriptions for fields in the form.

Method Description
constructor This is actually a very complex method. It builds the form

as an HTMLElement and adds all the attributes and the
children.
If the form is not built from a database table, a set of
options can be passed to the constructor. These options
are the fields of the form, following a structure that
provides the type of the element and other attributes.

from_model If the form is being built from a table or model, this
method reads the structure of the table or model and
builds the elements based on column type. For example,
for a MySQL table, fields of type varchar, int, date would
be rendered as input elements with the type attribute set
to text, enum fields would be renderd as select lists, text
fields as textareas and so on.

check The method receives data posted from the client and
validates it against the filters set during the building of
the form. If all filters pass validations the method returns
true, otherwise it returns false. If any given field fails
validation, the error message set when the filter was

applied gets added to the form and classes are added or
removed from the form element to provide more visual
awareness to the user.

add_element Add a new form element to an existing form. The element
can be added at the end of the form, at beginning of the
form, after a given element of before a given element.

Test Implementation Of The Form Model

Following are some examples of how the form class is used after the model has been
implemented using the PHP programing language. Due to length, we cannot show the
entire codebase for the implementation, but examples should help make an idea of how it
works.

The following is an example of a form built using an array of options. The form contains
text fields, radio buttons, file upload fields and select elements. Also, there are some
filters applied that restrict the PNC field to exactly 13 characters long and only allow it to
contain numbers and the file field is set to only accept jpeg and gif pictures. In addition,
some fields are marked as required.

$form = new Form(
 array("method"=>"post", "action"=>"employees/add", "class"=>"add",
 "enctype"=>"multipart/form-data"
),
 array(
 "Personal information"=>
 array(
 array("element"=>"input", "type"=>"text", "id"=>"fname",
 "name"=>"first_name", "label"=>"First name: ",
"required"=>true),
 array("element"=>"input", "type"=>"text", "id"=>"lname",
 "name"=>"last_name", "label"=>"Last name: ",
"required"=>true),
 array("element"=>"input", "type"=>"radio",
 "options"=>array("M"=>"M","F"=>"F"), "id"=>"sex",
"name"=>"sex",
 "label"=>"Sex: ", "required"=>false),
 array("element"=>"input", "type"=>"text", "id"=>"pnc",
"name"=>"pnc",
 "label"=>"Personal num. code: ", "required"=>true),
 array("element"=>"input", "type"=>"file", "id"=>"avatar",
"name"=>"avatar",
 "label"=>"Avatar: ", "required"=>false),
 "Employment information"=>
 array(

 array("element"=>"select",
"options"=>array("1"=>"CEO","2"=>"worker"),
 "id"=>"id_position", "name"=>"id_position",
"label"=>"Position: ",
 "required"=>false),
 array("element"=>"input", "type"=>"text", "id"=>"hiring_date",
 "name"=>"hiring_date", "label"=>"Hiring date: ",

 "readonly"=>"readonly", "class"=>"calendar",
"required"=>false)
)
),
 "Add employee"
);
$form->filters = array(

 "pnc"=> array(
 "min"=> array("value"=>13, "error_message"=>"The PNC must be exaclty 13
chars"),
 "max"=> array("value"=>13, "error_message"=>"The PNC must be exaclty 13
chars "),
 "type"=> array("value"=>"numeric", "error_message"=>"Only numbers
allowed")
),
 "avatar"=> array(
 "file_type"=>array("value"=>array("gif","jpeg","jpg"),
"error_message"=>"The file must be gif or jp(e)g.")
)
);
if($form->check($_POST, $_FILES)
 //form passed validation
else
 //form didn’t pass validation and now contains error messages

Another usage scenario would be to build the form from a database table or an MVC
model. The following example follows this scenario.

$form = new Form();
$form->model = "user";
$form->class = "input_edit";
$form->submit_label = "Modify!";
$form->method = "post";
$form->action = "cont/edit/cont";
$form->fields = array("username", "parola");
$form->required = array("parola");
$form->description = array("username"=>"The username for the account",
 "parola" => "The password");
$form->filters = array(
 "parola2" => array("equal" => array("value"=>"parola",
"error_message"=>"The password fields need to be identical."));
$form->from_model();
$parola2 = new HtmlElement("input", array("type"=>"text",
"id"=>"parola2", "name"=>"parola2"));
$parola2->label = "Retype password: ";
$parola2->description = "Please retype the password";
$parola2->required = "yes";
$parola2->type = "password";
$form->add_element($parola2, "append", "parola");
$form->get_child_by_id("parola")->type = "password";
$form->get_child_by_property("for","parola")->innerHTML = "Password: ";
$form->get_child_by_id("username")->disabled = "disabled";
$form->get_child_by_property("element", "legend")->innerHTML = "Account
info:";
if($form->check($_POST, $_FILES)
 //form passed validation

else
 //form didn’t pass validation and now contains error messages

Conclusion

The proposed model makes form generation and validation a really easy job and takes a
lot of work off the shoulders of developers. Automated validation is a huge gain when
dealing with large forms or large numbers of forms. Also, because no HTML is actually
written by the developer (aside from the HTMLElement class) standards compliance is
ensured. Furthermore, when the model gets updated, all forms created using it
automatically follow the updates.

The model could easily be used to create standalone classes or modules that are part of a
greater MVC architecture.

Acknowledgement

This work was co-financed from the European Social Fund through Sectorial Operational
Program Human Resources Development 2007-2013, projects POSDRU/107/1.5/S/77213
and POSDRU/88/1.2/S/55287 „Ph.D. for a career in interdisciplinary economic research
at the European standards”

Bibliography

1. M. Pilgrim, HTML5: Up and Running, O'Reilly Media, August, 2010
2. http://wufoo.com/html5/
3. http://www.html5rocks.com/en/tutorials/forms/html5forms/
4. W. J. Gilmore, Easy PHP Websites, Columbus, Ohio: W.J. Gilmore, LLC, 2009.
5. D. Ciccarelli, „Web 2.0 Definition,”

16.09.2006. http://blogs.voices.com/thebiz/2006/09/web_20_definition.html
6. K. MCArthur, Pro PHP Patterns, Frameworks, Testing and More, Apress, 2008.
7. A. Freeman, S. Sanderson, Pro ASP.NET MVC 3 Framework, Apress, 2011.
8. J. Galloway, P. Haack, B. Wilson, K. S. Allen, Professional ASP.NET MVC 3, John

Wiley & Sons, Inc., 2011.
9. http://thinkvitamin.com/code/fun-with-html5-forms/

	Abstract
	Introduction
	Html Standards And Form Elements
	The Model For Automated Form Creation And Validation
	Test Implementation Of The Form Model
	Conclusion
	Acknowledgement
	Bibliography

