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Abstract 
 
Recent versions of the well-known Newton-Raphson method for solving algebraic 
equations are presented. First of these is the method given by J. H. He in 2003. He 
reduces the problem to solving a second degree polynomial equation. However He’s 
method is not applicable when this equation has complex roots. In 2008, D. Wei, J. Wu 
and M. Mei eliminated this deficiency, obtaining a third order polynomial equation, 
which has always a real root.  
 
First of the authors of present paper obtained higher order polynomial equations, which 
for orders 2 and 3 are reduced to equations given by He and respectively by Wei-Wu-Mei, 
with much improved form.  
 
In this paper, we present these methods. An example is given. 
 
1. Newton-Raphson method 
 
Given a nonlinear equation 
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the approximations nx  of an exact real root x  of the equation has the following from: 
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2. He’s method 
 
Using second order Taylor’s expansion, He [3] developed a faster convergent iteration 
method, obtaining for the variation nnn xxt −= +1 , the second order polynomial equation 
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where 0x  and 1x , hence 010 xxt −=  are given and 
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He’s method is indeed faster convergent than Newton’s method, but it does not have 
solutions for all initial values, for the following condition must be fulfilled at every step: 
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3. Wei, Wu and Mei method 
 
Following He’s example, Wei, Wu and Mei, [4], proposed an even more quickly 
convergent method under the form of a third order polynomial equation: 
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Being a cubic equation it will have at least one real solution for any initial values, thus 
being more convenient than He’s method. 
 
 
4. Improvements of Newton-Raphson type methods 
 
If 10 xx = , hence 00 =t , in [2] was obtained for variations nt  of the approximations nx  

of an exact real solution of the algebraic equation ( ) 0=xf , the polynomial equations of 
order m , 
  

                                                       
( ) ( )

0
!0 1

1 =∑ =

m

k
k

k

t
k

xf
,                                                     

                      



                                               
( ) ( ) ( ) 02

! 21 2
2 =+∑ =

xft
k

xfm

k
k

k

,     

 
where  112 txx += ,                                          
         ……………………………………………………………………………… 
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where  11 −− += jjj txx , nj ≤≤3 , ,4,3=n .                              
 
 For 2=m , are obtained the improved He’s equations 
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where 11 −− += jjj txx , nj ≤≤3 , ,4,3=n .                                 

For  3=m , are obtained the improved Wei-Wu-Mei equations 
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where 112 txx += , 
…………………………………………………………………………. 
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where 11 −− += jjj txx , nj ≤≤3 , ,4,3=n .                        

      The improvement of these equations consists in replacing of ( )nxg  from constant 
term with simpler expressions. 



 
 

 
5. Numerical example 
 
 We give an example, taken from [6], in which He’s method does not apply.  

Consider equation ( ) 03 =−= −xexxf . Newton’s formula (11) gives recurrence 

relation 
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. Taking 00 =x , we obtain 11 =x , 8123.02 =x , 

7743.03 =x  and 7729.04 =x . 
For 2=m , taking  010 == xx , He’s method give quadratic equation 

022 1
2
1 =+− tt , which has complex roots, therefore this method is not applicable. 

  For 3=m , taking  010 == xx , the improved Wei, Wu and Mei method give 

cubic equation 06637 1
2
1

3
1 =−+− ttt , with real root 7673.01 =t , hence 

.7673.0112 =+= txx  Continuing recurrence process, we get 

              0025.02305.20698.20774.1 2
2
2

3
2 =−++ ttt , 011.02 =t 1, 7784.03 =x , 

and 
              00125.02769.21056.20765.1 3

2
3

3
3 =+++ ttt , 0055.03 −=t , 7729.04 =x .  
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