

IMPLEMENTING A MODERN TEMPORAL DATA MANAGEMENT SYSTEM

Ramon Mata-Toledo1
Morgan Monger2

Abstract

Temporal data management is a concept that has been around for many years. A temporal
data management system (TDMS) manages data that is tracked over time. In this paper, the
authors present an Oracle-based implementation of a TDMS that provides access to
temporal data. The design and implementation presented in this paper are presented at a
high level, with the significant features such as reference intervals and temporal
relationships. The most notable TDMS benefits are a semi-portable solution and an
implementation that maximizes on native database features. The paper finally presents an
evaluation of the TDMS implementation with a feature comparison and benchmarking.

Introduction

Temporal data is quite simply data that is tracked over time. A temporal data management
system (TDMS) manages temporal data analogous to a relational database management
system (RDBMS) managing snapshots of data; for the purposes of this paper, the RDBMS
will be referenced as a snapshot database or snapshot DBMS. Various approaches have
been proposed over the years regarding temporal data management, including middleware,
query language extensions, and a native TDMS. Rather than build on the diverse and non-
standardized implementations of a TDMS, an Oracle-based implementation has been
created that encompasses the chosen best features of these existing solutions [3] [5] [8]. In
addition, the TDMS presented in this paper incorporates temporal relationship operators
and reference intervals to enforce data validity [1]. Such an implementation based on
native features can provide automated temporal data management functions without
complex application development, while providing acceptable performance. In the next
sections, the design and implementation considerations are discussed.

Design And Implementation

From a design perspective, there are certain objectives that must be achieved by the
TDMS: full DBMS compatibility, maximization of native features, simplification of
implementation, and acceptable performance [9]. Compatibility is achieved by isolating
TDMS functionality from the Oracle functionality. Maximizing use of native features is
achieved by utilizing key Oracle features: functions, procedures, and triggers. Simplifying
the implementation requires managing the complexity of the TDMS [9]. Acceptable
performance is achieved by minimizing the overhead of temporal operations.

1 Ramon Mata-Toledo, Professor at James Madison University, email: matatora@jmu.edu
2 Lead Developer/Designer, Datatel, Inc., email: mdm@datatel.com

With respect to the design objectives, there are also design constraints for the TDMS.
Reference intervals and temporal relationship operators are essential to the TDMS
temporal constraints. Temporal relationship operators are implemented as functions and
can be utilized like any other SQL function. Temporal data is presented as temporal views,
where a temporal view is defined as a merge of an original snapshot table and a temporal
table. This has the benefit of separating the presentation of the temporal data from the
actual values, permitting custom views to be built from the temporal table. The primary
key of the snapshot table has been limited to a single numeric value. This limitation is
necessary because tracking different data types or multi-part keys increases the complexity
of the TDMS design. Finally, automating the TDMS has been implemented using the
trigger functionality of Oracle [9].

Architecture

At the design level, the architecture can be viewed in a layered model as shown in Figure
1. The TDMS exists in the RDBMS at the same level as the Database. The right side of
Figure 1 shows the component architecture of the TDMS. The use of native features is
shown with the procedures, functions, and triggers. The Temporal Catalog centralizes the
mapping of the snapshot table(s) and column(s) to a temporal table. The Temporal Data
Table provides a temporal table pattern that allows consistent automated functionality. The
Reference Interval Metadata contains information regarding the temporal constraints which
are composed of reference intervals and temporal relationship operators.

RDBMS

Database

API CLI

TDMS

Operating System

TDMS

Temporal Catalog Reference Interval Metadata

TDMS Procedures / Functions

TDMS Triggers

Temporal Data Table

Figure 1: TDMS Architecture

Deployment Method

The TDMS is deployed as an isolated subsystem of Oracle and is constructed as a SQL
script that contains the PL/SQL code and table metadata. This provides flexibility in
deployment because the SQL script runs in many different client interfaces; however, some
constraints were necessary in the implementation of this TDMS to provide the
aforementioned flexibility. Notable deployment constraints involve tables currently
accessed while being modified (mutating tables) and dynamic tables (pipelined functions)
[4].

Implementation Constraints

Though these constraints are implementation specific, the implementation may provide
an example solution to other developers encountering similar issues. A mutating table is a
problem because the triggers may need to query the snapshot table to create a copy for
temporal data. A resolution to the problem is to use a state package to track the modified
rows for the various triggers [7]. To manipulate interval information, dynamic tables pass
back modified rows of data to create new tables, which can be collapsed or expanded
accordingly.

Evaluation

Implementation Comparison
Temporal and functional comparisons of other TDMS implementations that are based on
Oracle provide a good implementation evaluation. ChronoLog is a front-end that
compiles temporal requests into SQL commands for Oracle. T-squared DBMS is a
temporal relational database integrated into Oracle. Böhlen provides a very
comprehensive comparison of these systems from temporal and functional perspectives
[2]. From the comparisons in Table 1, the presented TDMS appears to exhibit common
features of the other implementations.

T
up

le

T
im

es
ta

m
ps

A
ttr

ib
ut

e
T

im
es

ta
m

ps

T
em

po
ra

l
Q

ue
ri

es

T
em

po
ra

l
U

pd
at

es

T
em

po
ra

l
C

on
st

ra
in

ts

T
em

po
ra

l
V

ie
w

s

ChronoLog X X X X X
T-squared DBMS X X X X
TDMS X X X X X

Table 1: Functional Comparison

Benchmarking

Benchmarking provides a different means of comparison between implementations than
the implementation comparison in the previous section. A semantic benchmark provides
a means of verifying that a query against the temporal data returns the correct results [6].
Figure 2 shows an example where the valid start and end dates for marriage status when
individuals lived with their parents. This query provides a good example of using the
TDMS to discover when values were valid. A performance benchmark can be used to
compare snapshot query performance to TDMS query performance [6].
The performance benchmarking is based on various size random data sets: 1,000, 10,000,
and 100,000 records. The tests for each data set include INSERT and UPDATE
operations with the TDMS enabled (Temporal) and disabled (Snapshot). A notable
observation is that the TDMS takes longer to handle INSERT and UPDATE operations
on a temporal column. For the INSERT and UPDATE tests, the TDMS performance
degrades considerably for larger data sets. The authors believe this performance can be
improved by using native optimizations such as indexing and caching. The performance

degradation appeared to be the result of the temporal trigger scheme in this
implementation. Despite the large data set performance problem, the TDMS seems to
handle data sets of 10,000 records or less quite well.

Question:
What were the marital statuses of those who lived with their parents?

Query:
select v.name,
'['||to_char(to_date(t.v_start),'MM/YY')||', '||to_char(to_date(t.v_end),'MM/YY')||')
'||v.mstatus as mstatus
from employ_view2_mstatus_tview v, employ_view1_residence_tview t
where v.id = t.id AND t.residence = 'With Parents' AND tdms_overlap(t.v_start,t.v_end,
v.v_start, v.v_end) = 1;

Result:
NAME MSTATUS
-------------- -------------------------
Jenny Aris [12/77, 05/80) Single
Bill Nee [01/74, 11/76) Single
Ken Witts [01/80, 01/82) Single
Ken Witts [04/86, 06/86) Divorced
Figure 2: Example Semantic Test

Future Improvements

With regards to the current implementation, there are some improvements that can be
addressed. First, the performance can be improved with a new trigger scheme or native
optimizations. The next change to the TDMS involves adding removal procedures. This
functionality can benefit the TDMS by providing consistent removal methods, similar to
the TDMS creation procedures. Another beneficial change involves allowing multi-part
keys; the current solution restricts primary keys to a single numeric column. This change
can allow more complex snapshot tables to be tracked by the TDMS. Enforcing temporal
relationship changes can also benefit the TDMS. For instance, if the temporal relationship
operator is altered in the Temporal Catalog, then a trigger condition can verify that the
existing temporal data does not violate this change before writing the new temporal
relationship operator.

Conclusions

The benefits of the TDMS are that it provides an operating system independent solution
and maximizes on native features. The TDMS provides a semi-portable solution that
works in any Oracle 10 RDBMS. The TDMS utilizes many native features of the Oracle
RDBMS. The use of triggers, procedures, and functions in the TDMS provides a unique
system that makes the best use of native features for performance and stability. The

implementation comparison results demonstrated that the TDMS matched up to existing
implementations. For benchmarking, there are two types for this paper: semantic and
performance. For each temporal query, the correct data is returned in all instances. The
performance benchmarking demonstrated that the TDMS performed quite well for data
sets of 10,000 records and smaller. Finally, there are several suggested improvements that
can improve performance and allow for more complex temporal operator functionality.

References

[1] J.F. Allen, "Maintaining knowledge about temporal intervals," Communications
ACM,
 vol. 26, pp. 832-843, 1983.
[2] M.H. Böhlen, "Temporal database system implementations," SIGMOD Rec., vol.
 24, pp. 53-60, 1995.
[3] C.J. Date and H. Darwen, Temporal Data and the Relational Model, Morgan
 Kaufmann Publishers Inc, 2002.
[4] S. Feuerstein and A. Odewahn, Oracle PL/SQL Developer's Workbook,
 Sebastapol, CA: O'Reilly & Associates, 2000.
[5] C. Jensen, "Temporal Database Management," pp. i-1328, 2000.
[6] P. Kalua and E. Robertson, "Benchmark queries for temporal databases,"
 "Computer Science Department, Indiana University, Bloomington, Indiana 47405,
 USA"., March, 1993.
[7] T. Kyte, "Avoiding Mutating Tables," vol. 2005, pp. 7, 8/9/1999. 1999.
[8] R.T. Snodgrass, Developing time-oriented database applications in SQL, Morgan
 Kaufmann Publishers Inc, 2000.
[9] C. Vassilakis, P. Georgiadis and A. Sotiropoulou, "A Comparative Study of
 Temporal DBMS Architectures," in "DEXA Workshop", pp. 153-164, 1996.

	Introduction
	Design And Implementation
	Architecture
	Deployment Method
	Implementation Constraints

