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ABSTRACT: While there is uncertainty about the data that enter into economic models and about the 
parameters that govern economic models, the fact that economists often approach macroeconomic data 
armed with different models of the economy suggests that uncertainty, or ambiguity, about the model 
could also be potentially important. A policy can be made “robust” to model uncertainty by designing it to 
perform well on average across all of the available fully specified models rather than to reign supreme in 
any particular model. In this paper we compare the implications of robust monetary policy versus non 
robust monetary policy for a model based on a new Keynesian model with two equations that represent 
the dynamics of inflation and the dynamics of the output gap. Using Matlab, we are able to approximate 
the solution to the linear–quadratic problem associated with the estimated model, thus obtaining the 
optimal monetary policy decision.  
 
1. INTRODUCTION 
 
According to Alan Greenspan (2003), “Uncertainty is not just an important feature of the monetary policy 
landscape; it is the defining characteristic of that landscape”. In fact, the recognition that all monetary 
policymakers must bow to the presence of uncertainty appears to underlie Greenspan’s (2003) view that 
central banks are driven to a “risk management” approach to policy, whereby policymakers “need to 
reach a judgement about the probabilities, costs, and the benefits of the various possible outcomes under 
alternative choices for policy”.  

Uncertainty comes in many forms. One obvious form is simply ignorance about the shocks that will 
disturb the economy in the future (oil prices, for example). Other forms of uncertainty, perhaps more 
insidious can also have resounding implications on how policy should be conducted, three of which are 
data uncertainty, parameter uncertainty, and model uncertainty. 

2. THE MODEL 

When solving robust control problems there are generally two distinct equilibria that are of interest. The 
first is the “worst-case” equilibrium, which is the equilibrium that pertains when the policymaker and 
private agents design policy and form expectations based on the worst-case misspecification and the 
worst-case misspecification is realized. The second is the “approximating” equilibrium, which is the 
equilibrium that pertains when the policymaker and private agents design policy and form expectations 
based on the worst-case misspecification, but the reference model transpires to be specified correctly. 

According to the state – space formulation, the economic environment is one in which the behavior of an 
1×n  vector of endogenous variables, tz , consisting of  1n  predetermined variables, tz1 , and 

)( 122 nnnn −=  non predetermined variables, tz2 , are governed by the reference model 
 ,111121211111 ++ +++= ttttt CuBzAzAz ε   (1) 
  ,222212112 ttttt uBzAzAzE ++=+    (2) 
where tu  is a 1×p  vector of control variables, ],0[1 st Iiid≈ε  is an 1×s  vector, 1ns ≤  , of white – 
noise innovations, and tE  is the mathematical expectations operator conditional upon information 



available up to and including period t . The reference model is the model that private agents and the 
policy maker believe most accurately describes the data generating process. The matrices 

2122211211 ,,,,, BBAAAA  contain structural parameteres and are conformable with tt zz 21 ,  and tu  as 
necessary. The matrix 1C  is determined to insure that t1ε  has the identity matrix as its variance – 
covariance matrix. 
The policymaker’s problem is to choose a sequence for its control variables, ∞

0}{ tu , to minimize the 
objective function  
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where )1,0(∈β  is the discount factor. The weighting matrices, ,,UR  and Q  reflect the policymaker’s 
preferences; R  and Q  are assumed to be positive semidefinite and positive definite, respectively.  
Acknowledging that their reference model may be misspecified, private agents and the policymaker 
surround their reference model with a class of models of the form 

,)( 1111121211111 +++ ++++= tttttt vCuBzAzAz ε   (4) 
  ,222212112 ttttt uBzAzAzE ++=+    (5) 

where 1+tv  is a vector of specification errors, to arrive at a “distorted” model. The specification errors are 
intertemporally constrained to satisfy 
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where ],0[ ηη ∈  represents the “budget” for misspecification.  
 
3.  ROBUST POLICYMAKING WITH COMMITMENT USING STATE – SPACE METHODS 

 
In the commitment solution, both the policymaker and the evil agent are assumed to commit to a policy 
strategy and not succumb to incentives to renege on that strategy. Employing the definitions 
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the optimization problem can be written as  
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subject to  
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which, because the first – order conditions for a maximum are the same as those for a minimum, has a 
form that can be solved using the methods developed by Backus and Drifill ([1]). Those methods involve 
formulating the problem as linear – quadratic, the value function has the form dVzzzV ttt +′=)(  and the 
dynamic program can be written as 
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It is well known that the solution to this optimization problem takes the form 
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where tp2  is an 12 ×n  vector of shadow prices associated with the non predetermined variables, tz2 . The 
matrix T  provides a mapping between the state variables, tz1  and tp2 , and tz  and is given by 
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where 21V  and 22V  are submatrices of V . Finally, V  and F  are obtained by solving for the fix – point 
of  

,)~()~(~~2 FBAVFBAFQFFURV −′−+′+−= β   (16) 
).~~()~~~( 1 VABUBVBQF ′+′′+= − ββ     (17) 

When the worst case misspecification is realized, the economy behaves according to equations (16) – 
(18). While the worst case equilibrium is certainly interesting, it is also important to consider how the 
economy behaves when the reference model transpires to be specified correctly. Partitioning F  into 

][ ′′′ vu FF  where uF  and vF  are conformable with tu  and 1+tv , respectively. The approximating 
equilibrium has the form  
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Interestingly, the worst-case equilibrium and the approximating equilibrium share certain features. For 
instance, the worst-case equilibrium and the approximating equilibrium differ only with respect to the law 
of motion for the predetermined variables and, as a consequence, following innovations to the system the 
initial-period responses of the predetermined variables are the same for the approximating equilibrium as 
for the worst-case equilibrium. But since the decision rules for tz2  and tu  are also the same for the two 
equilibria, it follows that the initial-period responses by the nonpredetermined variables and by the policy 
variables are also the same. With respect to impulse response functions, differences between the 
approximating equilibrium and the worst-case equilibrium then only occur one period after innovations 
occur. 
Furthermore, because the coefficient matrix on the innovations is 1C , which scales the standard 
deviations of the innovations, it follows that adding noise to the innovations or changing their correlation 
structure is not part of the evil agent’s strategy. Instead, the optimally designed misspecification has the 



effect of changing the law of motion for the predetermined variables. More precisely, since the 
specification errors enter only the stochastic component of tz1 , the evil agent’s strategy is to change the 
conditional means of the shock processes but not their conditional volatility.  
 
4. ROBUST POLICY IN AN EMPIRICAL MODEL 
 
To illustrate the robust control approach, we study the model estimated by Rudebusch ([8]), which is 
based on a standard New Keynesian model and contains two equations that, conditional upon the short – 
term interest rate, ti , summarize the dynamics of inflation, tπ , and the dynamics of the output gap, ty : 

tttttt yE ,11 )1( πππ εαπµπµπ ++−+= −+ ,   (23) 

tyttttyttyt EiyEy ,111 )()1( επβµπµ +−−−+= +−+  (24) 
Equation (23) is a “New Keynesian Phillips curve” derived from the optimal pricesetting behavior of 
firms acting under monopolistic competition, but facing price rigidities. The presence of lagged inflation 
and the “supply shock” t,πε  can be motivated by indexing those prices that are not reoptimized in a given 
period and by a time-varying elasticity of substitution across goods, leading to time-varying markups. 
Equation (24) can be derived from the household consumption Euler equation, where habits in 
consumption imply that current decisions depend to some extent on past decisions. The “demand shock” 

ty ,ε  can be attributed to government spending shocks or to movements in the natural level of output.8 An 
empirical version of this model, suitable for quarterly data and similar to that estimated by Rudebusch 
([9]), is given by 
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j
jtt ππ  is four – quarter inflation and ti  is the nominal federal funds rate (the policy 

instrument). We generalize the model slightly to include forward – looking behavior in the output gap 
equation, as in Rudebusch ([9]). The model’s parameters estimates, shown in Table 1, are taken from 
Rudebusch ([8]) and are obtained using OLS (and survey expectations) on quarterly U.S. data from 
1968:Q3 to 1996:Q4, except for the parameter yµ , which is set to the average estimate. 
 
Table 1 – Parameter Values 
Inflation Output Monetary Policy 

πµ  0.29 
yµ  0.20 β  0.99 

1πα  0.07 
1yβ  1.15 λ  0.50 

2πα  -0.14 
2yβ  -0.27 υ  0.10 

3πα  0.40 
rβ  0.09   

4πα  0.07 
yσ  0.833   

yα  0.13     

πσ  1.012     
 



 The model’s key features are that inflation and the output gap are highly persistent, that monetary 
policy affects the economy only with a lag, and that expectations are formed using period 1−t  
information. Notice, also, that the weights on expected future inflation and output. While consistent with 
much of the empirical literature, are small relative to many theory – based specifications.  
 The central bank’s objective function is assumed to be 

 ,    (27) 

where we 1.0,5.0,99.0 === vλβ . Thus, the central bank sets monetary policy to avoid volatility in 
inflation around its target (normalized to zero) and in the output gap around zero (precluding any 
discretionary inflation bias). In addition, the central bank desires to limit volatility in the nominal interest 

rate around target (normalized to zero). The concern for misspecification,φ , is chosen so that the 
detection error probability is 0.1, given a sample of 200 observations. This implies that 5.54=θ .  
 The model can be written in state – space form as follows: 
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where  ( )′= −−−− 13211 ttttttt yyz ππππ ,  
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 We first solved the linear quadratic optimization problem in the nonrobust case. The matrix 
which gives the optimal feedback is  

( )4.296-16.047-40.24541.088-2.399 6.947-0.913 3.5410.36-20.1=K (33) 
and the optimal control is: 
 

tttt KzFziu −=== .     (30) 
 Next, we solved the worst – case robust control problem. In this case, 
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. Matrices A, C and R are the same as in the nonrobust case.  
 Solving the linear quadratic optimisation problem, we obtained the optimal feedback matrix 
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(31) 

 The optimal control is given by tt zKu −= , which means that the optimal policy rule and 
misspecification are given by: 
Coefficient on 
 

tπ  1−tπ  2−tπ  3−tπ  ty  1−ty  
Policy rule  

ti  

-1.67 -0.99 1.65 0.30 9.74 0.99 

Misspeficiation 

1, +tvπ  
1.4 -0.78 0.61 0.12 0.31 0.0005 

1, +tyv  
1.49 -0.47 0.83 0.15 0.42 0.0008 

 
 

In figures 1, 2, we plot impulse responses to unit – sized innovations to inflation ( t,πε ) under commitment 
using the state – space method, for the nonrobust and robust cases, respectively.  

 
  Figure 1   Figure 2 
6.  CONCLUSIONS 
In formulating monetary policy, central banks must cope with substantial economic uncertainty.  



Economic uncertainty can arise from different sources: the state of the economy, the nature of economic 
relationships, and the magnitude and persistence of ongoing shocks. 
Robust control theory instructs decision makers to investigate the fragility of decision rules by conducting 
worst-case analyses. 
In this paper we show how state space methods and structural-form solution methods can be applied to 
robust control problems, thereby making it easier to analyze complex models. 
We illustrate the state space solution methods by applying them to an empirical New Keynesian business 
cycle model of the genre widely used to study monetary policy under rational expectations. A key finding 
from this exercise is that the strategically designed specification errors will tend to distort the Phillips 
curve in an effort to make inflation more persistent, and hence harder and more costly to stabilize. The 
optimal response to these distortions is for the central bank to become more activist in its response to 
shocks.  
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